
Stockholm Science & Innovation School (SSIS)
Gymnasiearbete

Handledare: Joakim Ågren

The Development of the Kudu Project
Tobias Per Leopold Wennberg

tobias.wenn@pm.me
Stockholm Science & Innovation School (SSIS)

Joar Alexander Pablo von Arndt
JoarxPablo@pm.me

Stockholm Science & Innovation School (SSIS)

1



I. Abstract
The Kudu United Desktop Utilities (Kudu) project’s goal is to create a user-
friendly operating system with a comprehensive feature set while keep-
ing the entire system highly configurable, hackable and free as in freedom.
It should differentiate itself using a highly customized Emacs and by em-
ploying the Emacs X Window Manager as a user environment to offer a
seamless and coherent user experience. The system provides a fully cus-
tom installer with a user interface in the Emacs environment, providing
an easy installation; and an configuration written in org-mode with in-line
Emacs lisp that is easily and fully hackable. The project was written over
the course of several months with parallel development being carried out
on the GNU Emacs frontend and GNU Guix installer. While it does not
come with a pre-made ISO file, Kudu was ultimately successful at achieving
its goal. Licensed under GPL V3.0, the project is openly hosted on GitHub,
fostering a collaborative and transparent development process.

2



Content
I. Abstract ................................................................................................................................................. 2

II. Introduction ........................................................................................................................................ 5
II.I. Purpose ............................................................................................................................................................ 5
II.II. Background ................................................................................................................................................... 5
II.III. Method .......................................................................................................................................................... 5

III. Dissertation ....................................................................................................................................... 6
III.I. Frontend ....................................................................................................................................................... 6

III.I.I. What is Emacs? ................................................................................................................................ 6
III.I.II. Org mode ......................................................................................................................................... 6
III.I.III. Presentation ................................................................................................................................... 6
III.I.IV. The Emacs X Window Manager ................................................................................................ 7
III.I.V. Portability ......................................................................................................................................... 7
III.I.VI. Startup time minimization .......................................................................................................... 8

III.II. Backend ....................................................................................................................................................... 8
III.II.I. Setup installation disks ............................................................................................................... 8
III.II.II. Booting ........................................................................................................................................ 10
III.II.III. User Interface ............................................................................................................................ 11
III.II.IV. The Installation Script ............................................................................................................. 11

III.III. Conclusion .............................................................................................................................................. 13

Bibliography .......................................................................................................................................... 14

I. Appendix ............................................................................................................................................. 16
I.I. Code .................................................................................................................................................................. 16

I.I.I. LICENSE (GPL-3) ................................................................................................................................... 16
I.I.II. config.org ............................................................................................................................................... 25
I.I.III. early.init ................................................................................................................................................ 37
I.I.IV. init.el ...................................................................................................................................................... 38
I.I.V. install ....................................................................................................................................................... 39

I.I.V.I. Installer ........................................................................................................................................ 39
I.I.V.I.I. bare-bones.scm ............................................................................................................ 39
I.I.V.I.II. config.scm .................................................................................................................... 40
I.I.V.I.III. get_disks.sh ................................................................................................................ 40
I.I.V.I.IV. get_disks_test.sh ....................................................................................................... 40
I.I.V.I.V. get_keymaps_test.sh .................................................................................................. 40
I.I.V.I.VI. guix_config.scm ........................................................................................................ 41
I.I.V.I.VII. guix_iso.scm ............................................................................................................. 42
I.I.V.I.VIII. installer.el ................................................................................................................. 43
I.I.V.I.IX. installer.el ................................................................................................................... 45
I.I.V.I.X. install_iso.sh ............................................................................................................... 47
I.I.V.I.XI. install_quick.sh ......................................................................................................... 49
I.I.V.I.XII. install.sh .................................................................................................................... 49
I.I.V.I.XIII. install_test.sh .......................................................................................................... 51
I.I.V.I.XIV. keymaps ................................................................................................................... 52
I.I.V.I.XV. logo.ascii_art ............................................................................................................ 54
I.I.V.I.XVI. part_iso.sfdisk ........................................................................................................ 54
I.I.V.I.XVII. part.sfdisk .............................................................................................................. 55
I.I.V.I.XVIII. template.scm ........................................................................................................ 55

3



I.I.V.I.XIX. timezones ................................................................................................................ 56
I.I.V.I.XX. test_get_parts.sh ..................................................................................................... 64

I.I.V.II. quick-init.el ............................................................................................................................... 64
I.I.V.III. snippets ..................................................................................................................................... 65

I.I.V.III.I. org-mode .................................................................................................................. 65
I.I.V.III.I.I. cases ....................................................................................................... 65
I.I.V.III.I.II. cases  ..................................................................................................... 65
I.I.V.III.I.III. display_math ..................................................................................... 66
I.I.V.III.I.IV. fraction ................................................................................................ 66
I.I.V.III.I.V. fraction_dollar .................................................................................... 66
I.I.V.III.I.VI. fraction_dollar_2 .............................................................................. 66
I.I.V.III.I.VII. f(x) ...................................................................................................... 66
I.I.V.III.I.VIII. g(x) .................................................................................................... 66
I.I.V.III.I.IX. infinity ................................................................................................ 67
I.I.V.III.I.X. integral ................................................................................................. 67
I.I.V.III.I.XI. integral_dollar .................................................................................. 67
I.I.V.III.I.XII. integral_dollar_2 ............................................................................. 67
I.I.V.III.I.XIII. L ......................................................................................................... 67
I.I.V.III.I.XIV. lhd ..................................................................................................... 67
I.I.V.III.I.XV. limit .................................................................................................... 68
I.I.V.III.I.XVI. limit_dollar ..................................................................................... 68
I.I.V.III.I.XVII. limit_dollar_2 ............................................................................... 68
I.I.V.III.I.XVIII. mathbb .......................................................................................... 68
I.I.V.III.I.XIX. rhd .................................................................................................... 68
I.I.V.III.I.XX. sim ...................................................................................................... 68
I.I.V.III.I.XXI. sube .................................................................................................. 68
I.I.V.III.I.XXII. subset .............................................................................................. 69
I.I.V.III.I.XXIII. sum ................................................................................................ 69
I.I.V.III.I.XXIV. sum_dollar ................................................................................... 69
I.I.V.III.I.XXV. org-mode ....................................................................................... 69
I.I.V.III.I.XXVI. sup ................................................................................................. 69
I.I.V.III.I.XXVII. org-mode .................................................................................... 69

4



II. Introduction
II.I. Purpose
There are already numerous distributions of the
GNU operating system on the market, and many
are very similar. Kudu is differentiated by providing
GNU Emacs’ exwm with a superior default configu-
ration on a GNU Guix base for a unique experience
reminiscent of the lisp machines of old. While it is
not difficult for an intermediate GNU OS user to in-
stall GNU Guix with exwm, it may be annoying to
do many times, and it is not accessible for beginners,
causing them to choose less extensible solutions for
desktop frontends. The goal of Kudu is to create an
OS that the user can fully extend to their own needs,
rather than something imposed upon them.

II.II. Background
In 1976, TECMAS and TMACS was released. It was
a hackable text editor written by Guy Steele, Dave
Moon, et al. In 1978, EMACS (acronym for “Edi-
tor Macros”) was started as a project to unify edi-
tor macros that until then was diverse. The project
was started by one of the authors of TMACS, Guy
Steele; and developed with Richard Stallman, the
future founder of the GNU Project, and Richard
Greenblatt (GNU-Project, 2024a; Zawinski, 2007). A
decade later, Richard Stallman announces the found-
ing of the GNU Project, aiming to create a fully
free-as-in-freedom operating system loosely based
on the popular but proprietary UNIX operating sys-
tem, the grandfather of today’s Berkeley Software
Distribution (BSD) and MacOS used by Apple’s sta-
tionary and portable computers. This new operating
system needed various tools, one of which was a
fully featured text editor. In 1984, the GNU Project
chose to create their own version of EMACS, named
GNU Emacs, for this aim. Just a year later, Emacs
Lisp (elisp) was released, an interpreted program-
ming language used for emacs configuration. Elisp
allows for the customization of emacs, with impor-
tant subprograms such as a PDF viewer, the markup
language org-mode, a file manager, an email client,
web-browser et cetera being developed with it. This
allowed emacs to replace the entire user-facing part
of the operating system, but it did not allow for using
external graphical applications, it needed a dedicated
emacs app to work, and it needed a window manager

to be launched. On July 17, 2015, Chris Feng released
the Emacs X Window Manager (exwm) (Emacswiki,
2024; Feng, 2024). Exwm revolutionized the ability
to work entirely in emacs, allowing both emacs na-
tive programs, and external graphical programs to
work within the emacs workflow. The exwm lifestyle
allowed for seamless text editing, note-taking with
org-mode, web browsing with your choice of web
browser, terminal editing, and programming without
ever-changing keybindings or environment. There is
no alternative that accomplishes this goal, despite
calls for the development of a similar package aimed
at the Wayland display server (Bauer, 2022).

GNU Guix released its alpha in 2013. Inspired by Nix
OS released in 2003, it came with its own Guix pack-
age manager which allowed total system configura-
tion in the GNU Ubiquitous Intelligent Language for
Extensions (GUILE). This allowed for great system
configuration in a single file, so that two systems can
have the exact same dependencies. It also allowed for
an entirely GNU operating system, even the kernel
where one could choose between the Linux Libre or
the GNU Hurd kernel.

II.III. Method
Research for the installer came from reading official
documentation from GNU, reading the mailing list
and consulting independent lisp hackers. We asked
for help from the r/Guix subreddit and the official
GNU Guix mailing list. Most research was made by
trial and error with a large amount of manual testing
in a local KVM virtual machine.

For the frontend, inspiration was taken by collecting
material on the popularity of various Emacs pack-
ages as collected by the emacs user survey (Brochard,
2020), and by careful study of various preexisting
modifications to GNU Emacs. Especially influential
was Rougier’s On the design of text editors and corre-
sponding N Λ N O - Emacs (Rougier, 2020; 2024). The
development was carried out on a machine running
the Fedora GNU/Linux distribution while decisions
on the final structure of Kudu were still being made.

Wennberg was put in charge of designing and imple-
menting an installer interacted with through Emacs,
while von Arndt continued work on the GNU Emacs
frontend and workflow.

5



III. Dissertation
Kudu originally began as the personal configurations
files for GNU Emacs of von Arndt. The popularity of
so-called distributions of GNU Emacs, such as DOOM
Emacs (Lissner, 2024) and spacemacs (Benner, 2024)
and the widespread division of GNU/Linux into sim-
ilarly denominated distributions contributed to the
idea that the unification of the two was possible. It is
a famous aphorism made by users of vi, the ancient
rival of Emacs, that

Emacs would be a great operating system, if
only it came with a text editor.

— (Duan, 2024)

The idea was therefore extended to become a fully
featured operating system. The work was divided
into two parts: the desktop environment, encom-
passing configurations for GNU Emacs and other
user-facing software, and the installer encompassing
the backend configurations.

III.I. Frontend

III.I.I. What is Emacs?
GNU Emacs is not a text editor, it is a C program
that is fully extensible using its own dialect of the
lisp family of programming languages. The original
EMACS, was just a collection of pre-packaged exten-
sions meant for another text editor, and the major-
ity of GNU Emacs packages today are really noth-
ing more than incremental extensions of emacs lisp
written on top of this base written in C. Emacs is
of course most famous as a text editor, but that is
merely because it happens to be shipped with a de-
cent one built-in. In reality GNU Emacs would be
more aptly described as a modern-day extensible
lisp machine reminiscent of the workstations of the
1970s. Its long history has made it the superior tool
to be used when interacting with any form of text,
whether through editing or through the presentation
of the written word.

It has long been a stated goal of Emacs users, stated
somewhat jokingly, to “live in Emacs”; it has even
become the tagline for the exwm project’s page on
GitHub (Feng, 2024). This is the natural extension of
the Ellulian and Mumfordian concept of technics (El-

lul, 2011; Mumford, 1971) where the application of
technique extends to every area in which it can be
conceivably applied. Emacs’ extensible nature makes
this particularly easy, the entire application is de-
signed from the ground up to be the perfect environ-
ment for working with the most efficient of all me-
dia; text.

III.I.II. Org mode
One of the so-called killer apps for GNU Emacs is
Org-mode, “A GNU Emacs major mode for keeping
notes, authoring documents, computational note-
books, literate programming, maintaining to-do lists,
planning projects, and more — in a fast and effec-
tive plain text system” (Dominik, 2003). The literate
programming part of org is especially interesting, as
code can be written directly in prose documents and
run discretely, or exported as full files to be run ex-
ternally. Kudu uses this functionality to create a fully
self-documenting system, where the documentation
is the program, rather than being something imposed
upon it. This means that a user of Kudu will fully un-
derstand every part of the user-experience and allow
them to easily modify it as they see fit. This is visible
in Appendix I.I.II.

Kudu also comes with significant modifications
paired with the org-mode major mode. Most of these
are cosmetic in nature, changing the appearance
and visibility of text, but some provide additional
functionality not present in GNU Emacs by default.
One of these is the inclusion of snippets for the
yasnippet package that significantly improve the
speed at which in-line LaTeX can be written. Most
of these are inspired by the completion offered by
the AUCTeX major mode for the production of LaTeX
documents, as well as the CDLaTeX minor mode (Do-
minik, 2019; GNU-Project, 2024b).

A popular usage for org-mode is pairing it with
systems for the so called zettelkasten organizational
method (Kuan, 2022). This is however not directly
supported by Kudu, simply due to the fact that one’s
management of information is deeply personal and
is best handled and structured after the user’s own
habits and needs.

III.I.III. Presentation
When new users first install GNU Emacs they are
initially confronted with a lot of information. The

6



default startup screen for GNU Emacs contains a lot
of information, including links to the built-in Emacs
tutorial, a guided tour, the in depth Emacs manual,
the fact that GNU Emacs is provided without any
warranty, and how to order printed manuals. This
is superfluous for a long-time user of Emacs, and so
are the two rows of clickable menus with command
easily accessible through the universal M-x shortcut,
allowing the user to run any interactive Emacs lisp
command. Kudu chooses to discard this, instead pro-
viding easy documentation through the marginalia
package that displays explanatory notes for interac-
tive elisp functions.

Figure 1: Kudu as shown on startup, with a collection
of recent files displayed using the modus-operandi

theme developed by Protesilaos Stavrou.

This is only one of the changes made to the GNU
Emacs interface, and it is not one that is very con-
troversial amongst veteran users. One of the more
unusual changes made is the inclusion of a custom
header- and modeline, as can be seen in Figure  1,
displaying information like the current major mode,
buffer name, and time without the unnecessary clut-
ter of the default mode-line.

Kudu also comes with a suite of programs intended
to ease programming in different languages, specif-
ically those in the lisp family. For this packages

like rainbow-delimiters, smartparens, and the leg-
endary paredit modes are included by default. Kudu
also uses the popular fork of The Superior Lisp Inter-
action Mode for Emacs (Gorrie, 2024) knows as Sly:
Sylvester the Cat’s Common Lisp IDE. The reason for
using sly over SLIME is merely due to the fact that
when a sly session is started, it displays an ASCII-
art drawing of a cat, something that SLIME does not
do.

III.I.IV. The Emacs X Window Manager
The most transformative difference between Kudu
and other traditional GNU/Linux distributions is the
fact that the user instantly enters an environment
wholly interacted with through Emacs keybinds and
through emacs lisp functions instead of a mixture
between keybinds intended for emacs and those in-
tended for the window manager. GNU Emacs pre-
dates the concept of the Graphical User Interface
(GUI) and also the idea of the modern-day concep-
tion of the “window” as an indivisible init, instead
emacs uses three concepts to display content:

Frame The largest unit, commonly what is
called a "window".

Window Areas of the frame divided up verti-
cally and horizontally to make space
for buffers.

Buffer A unit of information for display. This
may be a file, an elisp program, or in
the case of exwm, another X window.

Since GNU Emacs covers the entire monitor in order
to manage other windows, frames are merely used
to provide multi-monitor support, multiple work-
spaces, and are used to show floating windows. A
core difference between the way Emacs manages
buffers and how more popular window managers do
things, is that a buffer needs not be shown at all
times. This makes ideas like workspaces unnecessary
in practice, as content can be displayed and hidden
in mere moments.

III.I.V. Portability
But Kudu does not merely include support for a Guix
system running exwm, even if that is the primary
targeted platform. GNU Emacs can run on a variety
of different machines, including proprietary operat-
ing systems like Microsoft Windows, and non-GNU

7



machines running the Linux kernel like Android.
For these machines, where special tooling or certain
functionality may not be available or wanted, certain
changes must be made. One example of this is the
in-buffer completion prompts offered by the corfu
package. corfu use child frames to show prompts,
but these are not available in areas were only one
frame is available, as when Emacs is run with the -nw
flag for use in a terminal. Prompts are instead shown
as elaborately formatted text boxes, that display the
same information without compromising on appear-
ance.

Similarly, Kudu does not load the otherwise quite
large part of code covering configuration and startup
of exwm, and also avoids executing multiple external
programs to fetch information that otherwise may
not be available when Kudu is run on a non-Guix
system platform.

III.I.VI. Startup time minimization
Emacs is notorious for often taking multiple sec-
onds to start if configured haphazardly. For this rea-
son multiple techniques are employed to minimize
the number of packages loaded and how those pack-
ages that need to be loaded are handled. The ideal
target to aim for is the legendary “Doherty Thresh-
old” (Crum, 2020) of less than 400 milliseconds, mak-
ing interaction with the computer practically instan-
taneous. While this was often times not attainable, it
is not a major concern due to the fact that restarting
emacs is not done very frequently even under ordi-
nary circumstances, and especially not when Kudu
is run under its intentional use of being the X win-
dow manager.

As described in the gccemacs documentation (Co-
rallo, 2021); The version of emacs shipped with Guix
is compiled with the --with-native-compilation
flag that allows for the compilation of elisp to na-
tive code, significantly increasing speed. For this the
libgccjit library is used, inspired by the very fast
Steel Bank Common Lisp (SBCL) implementation of
the ANSI Common Lisp standard. Kudu then com-
piles .el libraries into the .eln native file format
upon first load without any required input from the
user.

Native code contributes significantly to increased re-
sponsiveness when working in the GNU Emacs en-

vironment, but its effect on the perceived startup
speed, usually the single slowest operation in a given
session of using GNU Emacs, is negligible. Instead,
we should attempt to shift what is by default a front-
heavy workload over a longer period of time, per-
haps when the user has already started performing
operations. Primarily the RAM limit before garbage
collection is performed is set to an arbitrarily large
size, and then set to a more reasonable limit after
the startup sequence has been completed. This can
be observed in the beginning portion of the early-
init.el file in Appendix I.I.III.

Through the application of these methods, the time
required for GNU Emacs to start with packages used
is decreased by roughly two powers of ten. This is
especially noticeable on low-power devices, where
single-threaded performance is often limited in com-
parison with more powerful machines.

III.II. Backend
The backend of Kudu is configured during the instal-
lation. During the installation, one need to consider
many parameters to make the system work as one
which. Installation of any GNU/Linux system consist
of at least 5 steps:
1. Setup installation environment
2. Setup installation disk
3. Install packages to disk
4. Configure the environment
5. Configure bootloader

(arch-linux, 2024a). Kudu also needs a user interface
as it is meant to be user-friendly.

Setting up the operating system environment in
a manual installation of Guix involves creating a
bootable disk of the Guix iso, booting guix (see Sec-
tion III.II.II about booting), setting the keyboard lay-
out and connecting to the internet (GNU-Project,
2024c). Kudu wishes to make most of these steps triv-
ial or non existent.

III.II.I. Setup installation disks
Setting up installation disks involves two steps: par-
titioning and formatting.

A partition is a region of a disk. It is typically used to
separate the disk so that different parts can be used
for different purposes. The partition data is stored
on the disk device, the data includes the start- and

8



end sector (where the region is on the device), the
partition type, and if the partition is bootable or not
(Ward, 2004). The Kudu installer utilize sfdisk to par-
tition the drives as it is the standard utility on GNU
systems. Sfdisk can be used to configure disk parti-
tion via a partition schema file. The Kudu partition
schema looks like this:

1 label: gpt
2 label-id: [label id]
3

4 start=2048,size=4096,type= [efi_boot],,
bootable

5 start=6144,size=2097152,type=
[linux_swap],

6 start=2103296,size=1G,type=
[linux_partition],

Table 1: The sfdisk partition schema of Kudu, rewrit-
ten to be more readable but non functional. The real
partition table can be found at Appendix I.I.V.I.XVII

There are three partitions: the boot partition, swap
partition and root partition. The boot partition is fur-
ther elaborated under Section III.II.II. The swap par-
tition is used for linux swap; a form of virtual mem-
ory where memory can be moved to if the system
run out of real memory (Ward, 2004). The swap is
2GB which is a typical amount for modern systems
that don’t make use of hibernation. The root parti-
tion is the partition where the system and user data
is stored. The size of the root partition is the rest of
the disk. Partition data is written as follows:

sfdisk -f $disk < part.sfdisk
parted -s $disk resizepart 3 100%

Each partition needs to be formatted. The swap
partition is formatted to swap with mkswap
$swappartition, the rest need to be formatted with
a filesystem. A filesystem is a system to manage
files (and directories). These are a fundamental part
of most operating systems, as they rely on files and
directories to store all data (arch-linux, 2024b). The
filesystem can be physical or virtual. Examples on
virtual filesystems are tmpfs and rootfs, these live
in ram and are volatile. Rootfs is used by the linux
kernel as the first created filesystem, they are conve-
nient as they do not require device drivers to work.
They are also used by the GNU system tails OS so
that the writable filesystem is volatile and data per-
ish between bootup, which may be considered a se-

curity feature. One could also count application spe-
cific filesystems into this category, such as smb, nfs,
virtiofs and similar. A physical filesystem stores data
on a disk. Most disks make the data non volatile and
the storage cheaper, but slower than the ram based,
virtual filesystem. Kudu do not need to consider a
virtual filesystem, but it does need to consider a
physical one. To configure a physical filesystem, one
need to configure the disk to work with the filesys-
tem and then start it. To configure the disk, one for-
mat it. Format the disk means to set the bits on the
disk to work with the filesystem driver, this usually
removes all data on the disk. To format a disk to
fat, one would run mkfs.fat $disk on a GNU sys-
tem. To start the filesystem on a GNU Linux system,
one would typically download and configure the dri-
vers to the linux kernel, and then mount the filesys-
tem. Different filesystem comes with advantages and
disadvantages. Some are faster on flash, some are
faster on mechanical drives, some support encryp-
tion, some support online expanding, some support
shrinking. It is important to choose the right filesys-
tem for a good user experience.

Kudu has two partitions that require filesystems: the
boot- and root partition. For the boot partition, we
will use fat32 as it needs to be supported by the
UEFI boot interface (expanded upon at Section III.I-
I.II). UEFI demands support for the fat12, fat16 and
fat32 filesystems. Fat32 is the best of these for sizes
exceeding a few megabytes. There are many possible
choices for the root partition’s filesystem. The most
popular for desktop use are btrfs, ext4, zfs, ntfs, f2fs,
fat, vfat. Ntfs is used in the Microsoft Windows oper-
ating system, but the drivers provided for it are lack-
ing in many areas, and so it is not a serious contender
for use by Kudu. Fat derived file systems (fat8, fat12,
fat16, fat32 and vfat) suffer severely from reduced
speed after many small files are accumulated, and so
are not a good choice for kudu either. F2fs does not
support the convenient features such as resizing the
filesystem except for offline enlarging, and while it
is very fast on flash storage, it experiences very slow
speeds on spinning disks and so is not useful on a
system intended to be compatible on any machine.
Zfs on the other hand is very useful for raid arrays,
but for single disk operations is it overkill and suf-
fers from high memory usage. That leaves btrfs and

9



ext4. For these reasons they are also the most popu-
lar choices for GNU systems. Here is a table with the
file systems of select popular desktop GNU systems:

btrfs ext4
fedora debian
suse RHEL

pop os ubuntu

For now ext4 was chosen as it has more stable dri-
vers and is a slightly faster than btrfs in most appli-
cations. It would not be difficult to change to another
file system if the project wishes to do so in the future.

III.II.II. Booting
The Kudu project is built for personal computers
using the x86 instruction set as defined by Intel;
with the 64 bit instructionset extension as defined
by Advanced Micro Devices (AMD), often called
x86_64, x64 or amd64; with an architecture plat-
form firmware compatible with the Unified Extensi-
ble Firmware Interface (UEFI) specification. These in-
clude most typical, modern, personal computers; al-
though some may still use the Basic Input/Output
System (BIOS) which Kudu is in-officially supported
on.

UEFI is a standard for booting (starting) the operat-
ing system, and to interface with hardware devices.
It is supported by most modern personal comput-
ers, with some older machines only supporting BIOS
and/or EFI - the predecessors to UEFI (arch-linux,
2024c). The first step an UEFI system performs after
power on is a power on self test (POST), where the
firmware checks if the system works. Following a
successful POST, the firmware searches for efi par-
titions, which is a type of partition record that is
bootable (partition tables are explained at Section II-
I.II.I). The firmware will choose which one to boot off
by checking the boot order in the non-volatile nvram
that the firmware uses as local storage. After choos-
ing the boot partition, the firmware will try to mount
the partition. UEFI mandates support for fat12, fat16
and fat32 filesystems, but a motherboard may sup-
port more; so one of these should be used by the EFI
partition. When it is mounted, it will run the byte-
code at /EFI/Boot/bootx64.efi. That file will be the
start binary of our choosing.

In order to start a GNU operating system, one need
to start a kernel (GfG, 2023). The kernel is a pri-
mary part of operating system design. Its primary
functions are memory management, task manage-
ment, threading, and communication with hardware
components (GfG, 2023). There exists many kernels,
some popular ones for server or personal computers
are the linux kernel, Microsoft Windows NT Kernel
and FreeBSD Kernel. Kudu needs to consider these
points: the kernel needs to be free software as ac-
cording to fsf (fsf, 2024a), it needs to be compatible
with guix, it needs to be usable by most consumers.
Guix officially supports two kernels: the GNU hurd
kernel and the linux libre kernel. Both of these are
recommended by the FSF (fsf, 2024b; FSFLA, 2024).
linux libre is preferred of these as it has a lot better
driver support, and thereby works on more systems.
Another alternative is the official linux kernel, which
linux libre is a fork of. While the linux kernel is free
software, the linux-firmware repository contains a
significant amount of non free binaries (Linux_Ker-
nel_Organization, 2024). This firmware is used to
initialize and make devices work, and a significant
amount of device drivers is only available as non free
binaries. Linux libre protects the user from loading
non free firmware, and do not provide non free bi-
naries by default. While one can make linux work
pretty easily on guix, it is not offically supported. Be-
cause it is not offically supported, and may be non
free, linux libre kernel maintained by the Free Soft-
ware Foundation Latin America was preffered in-
stead of linux.

The kernel can be started in many ways. The UEFI
can start the kernel using technologies ike the uni-
fied kernel image (UKI) or efistup (arch-linux, 2024d;
2024e). Typically, one would use a boot-loader as
an intermediate step between the kernel and UEFI.
A boot managers purpose is to set kernel parame-
ters and to load external initramfs images (important
driver binaries); they typically support functional-
ity like dual booting, where one can conveniently
choose which operating system to boot; and support
for rollback on operating systems that themselves
provide support (arch-linux, 2024f; RHEL, 2024).
There are many boot managers available to choose
from, for example: systemd-boot, refind, lilo; Kudu
will be using the GRand Unified Bootloader (grub),

10



as it is the most popular, has a large feature set, has
great integration with the guix configuration schema
and is maintained by the GNU Project that also de-
velops Guix.

When user setup is done and grub is ready to
run linux-libre, it will mount the root file system
as according to the configurations provided; load
any appropriate initramfs images, which are used
by the kernel to load appropriate drivers, and start
the linux-libre kernel located at /boot/vmlinuz-
{version}-amd64 according to the configuration,
and hand control over to it. The kernel creates the
virtual filesystem (rootfs) and copies the initramfs
into it, kernel modules are set up and the root filesys-
tem is mounted at /sysroot and switched into (arch-
linux, 2024f; RHEL, 2024).

The linux kernel launches one process - PID 1 - which
is typically the init system. The most popular one
is systemd-init, used on popular systems such as De-
bian, Ubuntu, Red Hat Enterprise Linux, Arch Linux
and SUSE Linux; popular alternatives include openrc,
s6, sinit and runit, some of these has built in init,
while others are service managers and needs it as a
second init dependency; guix comes with its own init
system and service manager, GNU Shepherd. The init
system starts the rest of the processes, such as a login
screen, networking and a lot more; it is the parent
or grandparent of all processes. Now, the system is
running (arch-linux, 2024f; 2024g; RHEL, 2024).

III.II.III. User Interface
In any development project, it is important to choose
the right technology. With the installer, one of the
important choices was the technology for the text
user interface (TUI), as when chosen, most code
written will be impossible, or very time-consum-
ing, to port to another technology. As the project
is Emacs centric, it would be preferable if the user
enters the emacs environment immediately. That
means the TUI should be written in the elisp pro-
gramming language, as it is the only programming
language that emacs is extended in. Emacs is really
nothing more than a C program running an elisp in-
terpreter, and so any capabilities afforded to emacs
are directly accessible from elisp. This includes the
ability to spawn buffers, setting write permissions
on buffers, adding text to buffers and other emacs

features such as macros. These features provide the
ability to create more complex user objects such as
text boxes, radio buttons, check boxes and buttons.
Doing this in the shell would be very annoying, as
one would need to create all of these complex, high
level object from those very simple low level func-
tions (Dickey, 2022). The Emacs Widget library pro-
vides tooling for these complex objects, vastly sim-
plifying the process of creating buffers with TUI like
functionality (GNU-Project, 2024d). An alternative
to widget is tui.el, A react-js inspired framework for
building a TUI in emacs. Emacs widget was chosen
as it seem to have better documentation, bigger com-
munity, and as it comes with emacs 29.1, the risk of
it experiencing breaking changes is very low.

III.II.IV. The Installation Script
As elisp is neither systems- nor command language,
one cannot with any comfort or speed use it to con-
figure the system. Another language is needed for
system setup. Using a system language, such as C,
C++, rust or zig would allow for great performance
and flexibility, but would require one to write a lot of
“boilerplate” code, and the type requirements would
make it somewhat difficult to interact between pre-
made commands. A command language, such as
shell, the Born Again SHell (bash), Z shell, fish and
xonsh is a language to operate a computer via com-
mands; typically, they provide the ability to use it
as the primary interface in a terminal, and the abil-
ity to write scripts to automate the commands. All
the languages listed above provides these features.
Kudu chose to use bash as it is mature, widely imple-
mented and comes with Guix. The same things can
be said about shell, but its scripting features are lim-
ited in comparison with bash. Shell is used through-
out the installation as its binary location is constant
at /bin/sh, while location of the bash binary may be
unknown. Both bash and shell are compatible with
the Portable Operating Systems Interface (POSIX)
standard defined by the Institute for Electrical and
Electronics Engineers (IEEE). This means that most
commands written in shell can be run using the bash
binary, but not all commands written in bash can be
run by shell (GNU-Project, 2020).

Shell is used for purposes in the frontend, like
the script to fetch the disks (available at Appen-
dix I.I.V.I.III), while bash is used for the primary in-

11



stall-script. It is called from the emacs frontend using
elisp with this function:

1 (defun upload (hostname username disk
timezone keymap)

2   (setq cmd (format
3     "bash ../installer/install.sh --

hostname %s --username %s --disk %s --
timezone %s --keymap %s &"

4     hostname
5     username
6     disk
7     timezone
8     keymap))
9   (shell-command cmd))

Table 2: Function to start installscript from installer
script. Available at Appendix I.I.V.I.VIII.

The first thing the install-script does is formatting
the disk, as described in Section III.II.I, mounting the
root disk at /mnt, and starting the cow-store at /mnt.
The copy on write-store is the location where the guix
package manager will write. As it is mounted on /
mnt, any downloads, pulls and writes the guix pack-
age manager does will be written to the installation
disk. Then it initializes the Guix config.

Inspired by NixOS and its nix package manager, the
Guix package manager uses a scheme language to
describe the system that should be installed. In the
config file, one can state which packages should be
globally installed, which users should exist, which
services to enable, custom services, disks and much
more. The Kudu Guix config can be found at Appen-
dix  I.I.V.I.VI. The packages required are explained
in the frontend section, the disks in the disk setup
as explained in the Section  III.II.I. The services are
the default services for getting the system working,
gnome-desktop for the display manager and some
xorg services for the display server. The bootloader
is configured with:

1 (bootloader
2   (bootloader-configuration
3     (bootloader grub-bootloader)
4     (targets '("$DISK")))
5   (theme
6     (grub-theme
7     (resolution '(1920 . 1080))
8     (image (local-file "/mnt/etc/

Kudu_grub_image.svg")))))

Table 3: Bootloader configuration from the guix con-
fig file, file available at Appendix I.I.V.I.VI.

The custom configuration is a Kudu theme, the rest
of the code is pulled from the guix wiki. The theme
simply load an image at 1080p resolution.

Many values are variable, such as the timezone, user-
name, hostname, disk, and filesystem uuid’s. These
are set in the config file with a $’sign, as seen at line
4 Table 3. The variables are inserted via the install-
script with this function.

1 function substitute_variables() {
2   local str="$1"
3   shift
4   for var; do
5   str="${str//\$$var/${!var}}"
6   done
7   echo "$str"
8 }

Table 4: Function to substitute variables in a string.
Code available at Appendix I.I.V.I.XII.

Which is called with

$(substitute_variables "$scheme_template"
DISK HOSTNAME USERNAME SWAP_UUID ROOT_UUID
TIMEZONE KEYMAP)

To retrieve the string with the inserted variables. The
finished string with the variables is written to /mnt/
etc/config.scm. The system then is installed with.

1 guix pull
2 guix package -u
3 hash guix
4 guix pull
5 guix package -u
6 hash guix
7 guix system init /mnt/etc/config.scm /

mnt

Table 5: The install part of the install script, code
available at Appendix I.I.V.I.XII.

The repeated guix pull is done to ensure the guix
repositories are properly pulled. guix system init
initialize the system with the packages, now the sys-
tem should be installed and booting.

Nextup, the emacs configuration files need to
be installed. The configuration files should exist
at ~/.emacs.d (where ~/ is the home directory
of the user). This path is equivalent to /mnt/
home/$USERNAME/.emacs.d. The configuration is the
root of the kudu git-repository https://github.com/

12

https://github.com/JanJoar/Kudu-Emacs.git


JanJoar/Kudu-Emacs.git. We just need to clone it to
the directory

git clone https://github.com/JanJoar/Kudu-
Emacs.git /mnt/home/$USERNAME/.emacs.d

III.III. Conclusion
The Kudu project has successfully crafted a GNU
Guix distribution with its own custom installer ar-
chitecture and a unique user environment with spe-
cial focus on interacting in the GNU Emacs environ-
ment. It’s special focus on interacting through the
emacs interface has made it stand out amongst its
competitors, and the valuable addition of numerous
extensions and modifications made to GNU Emacs
core allows the user to work in a seamless emacs-ori-
ented environment. The fact that almost all of Kudu’s
emacs configuration is written in org-mode facili-
tates the spread of knowledge to emacs users who
may not be very familiar to the GNU Emacs ecosys-
tem and package environment. It is the hope of the
authors of this document that the additions of Kudu
to the world’s total bank of information will facilitate
the spread of knowledge about reproducible systems
like GNU Guix and of their benefits in the fast and
easy deployment of numerous machines.

13

https://github.com/JanJoar/Kudu-Emacs.git


Bibliography
arch-linux. (2024f). Arch boot process. https://wiki.archlinux.org/title/Arch_boot_process

arch-linux. (2024a). Installation guide. https://wiki.archlinux.org/title/Installation_guide

arch-linux. (2024c). Unified Extensible Firmware Interface. https://wiki.archlinux.org/title/Unified_Extensible_
Firmware_Interface

arch-linux. (2024e, March). EFISTUB - ArchWiki. https://wiki.archlinux.org/title/EFISTUB

arch-linux. (2024b, March). File systems - ArchWiki. https://wiki.archlinux.org/title/File_systems

arch-linux. (2024g, March). init - ArchWiki. https://wiki.archlinux.org/title/Init

arch-linux. (2024d, March). Unified kernel image - ArchWiki. https://wiki.archlinux.org/title/Unified_kernel_
image

Bauer, M. (2022). Emacs should become a Wayland compositor. https://emacsconf.org/2022/talks/wayland/

Benner, S. (2024). Spacemacs. https://github.com/syl20bnr/spacemacs

Brochard, A. (2020). Emacs User Survey. https://emacssurvey.org/2020/

Corallo, A. (2021). gccemacs. https://akrl.sdf.org/gccemacs.html

Crum, L. (2020). Laws of UX: Using Psychology to Design Better Products & Services,. Design and Culture,
12(3), 357–359. https://doi.org/10.1080/17547075.2020.1822074

Dickey, T. (2022). Ncurses Overview. https://invisible-island.net/ncurses/announce.html#h2-overview

Dominik, C. (2003). Org-mode: Your life in plain text. https://orgmode.org/

Dominik, C. (2019). CDLaTex. https://staff.fnwi.uva.nl/c.dominik/Tools/cdlatex/

Duan, C. (2024). Vi(m): The One True Text Editor. https://www.cduan.com/technical/vi/

Ellul, J. (2011). The Technological Society ([Nachdruck der Ausgabe] New York, Knopf). Vintage books.

Emacswiki. (2024). Emacs X Window Manager. https://www.emacswiki.org/emacs/Emacs_X_Window_
Manager

Feng, C. (2024). Github exwm. https://github.com/ch11ng/exwm

fsf. (2024a, February). What is free software and why is it so important for society? Free Software Foundation
Working together for free software. https://www.fsf.org/about/what-is-free-software

fsf. (2024b, April). Hurd - Free Software Directory. https://directory.fsf.org/wiki/Hurd#tab=Overview

FSFLA. (2024). GNU Linux-libre, Free as in Freedo. https://www.fsfla.org/ikiwiki/selibre/linux-libre/

GfG. (2023). Kernel in Operating System. Geeksforgeeks. https://www.geeksforgeeks.org/kernel-in-operating-
system

GNU-Project. (2020). GNU Bash. https://www.gnu.org/software/bash/

GNU-Project. (2024a). The GNU Emacs FAQ. https://www.gnu.org/software/emacs/manual/html_mono/efaq.
html

GNU-Project. (2024b). AUCTeX – Sophisticated document creation. https://www.gnu.org/software/auctex/

GNU-Project. (2024c). Manual Installation. https://guix.gnu.org/manual/en/html_node/Manual-Installation.
html

14

https://wiki.archlinux.org/title/Arch_boot_process
https://wiki.archlinux.org/title/Installation_guide
https://wiki.archlinux.org/title/Unified_Extensible_Firmware_Interface
https://wiki.archlinux.org/title/Unified_Extensible_Firmware_Interface
https://wiki.archlinux.org/title/EFISTUB
https://wiki.archlinux.org/title/File_systems
https://wiki.archlinux.org/title/Init
https://wiki.archlinux.org/title/Unified_kernel_image
https://wiki.archlinux.org/title/Unified_kernel_image
https://emacsconf.org/2022/talks/wayland/
https://github.com/syl20bnr/spacemacs
https://emacssurvey.org/2020/
https://akrl.sdf.org/gccemacs.html
https://doi.org/10.1080/17547075.2020.1822074
https://invisible-island.net/ncurses/announce.html#h2-overview
https://orgmode.org/
https://staff.fnwi.uva.nl/c.dominik/Tools/cdlatex/
https://www.cduan.com/technical/vi/
https://www.emacswiki.org/emacs/Emacs_X_Window_Manager
https://www.emacswiki.org/emacs/Emacs_X_Window_Manager
https://github.com/ch11ng/exwm
https://www.fsf.org/about/what-is-free-software
https://directory.fsf.org/wiki/Hurd#tab=Overview
https://www.fsfla.org/ikiwiki/selibre/linux-libre/
https://www.geeksforgeeks.org/kernel-in-operating-system
https://www.geeksforgeeks.org/kernel-in-operating-system
https://www.gnu.org/software/bash/
https://www.gnu.org/software/emacs/manual/html_mono/efaq.html
https://www.gnu.org/software/emacs/manual/html_mono/efaq.html
https://www.gnu.org/software/auctex/
https://guix.gnu.org/manual/en/html_node/Manual-Installation.html
https://guix.gnu.org/manual/en/html_node/Manual-Installation.html


GNU-Project. (2024d). The Emacs Widget Library. https://www.gnu.org/software/emacs/manual/html_mono/
widget.html

Gorrie, L. (2024). SLIME: The Superior Lisp Interaction Mode for Emacs. https://slime.common-lisp.dev/

Kuan, J. (2022). Org-roam: A plain-text personal knowledge management system. https://www.orgroam.com/

Linux_Kernel_Organization. (2024, April). Frequently asked questions. https://www.kernel.org/faq.html

Lissner, H. (2024). DOOM Emacs. https://github.com/doomemacs/doomemacs

Mumford, L. (1971). Myth of the Machine: Technics and Human Development. Mariner Books.

RHEL. (2024). A Detailed Look at the Boot Process. https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/5/html/installation_guide/s1-boot-init-shutdown-process

Rougier, N. P. (2020). On the design of text editors. Corr. https://arxiv.org/abs/2008.06030

Rougier, N. P. (2024). N Λ N O - Emacs. https://github.com/rougier/nano-emacs

Ward, B. (2004). How Linux Works: What Every Superuser Should Know. No Starch Press.

Zawinski, J. (2007). Emacs Timeline. https://www.jwz.org/doc/emacs-timeline.html

15

https://www.gnu.org/software/emacs/manual/html_mono/widget.html
https://www.gnu.org/software/emacs/manual/html_mono/widget.html
https://slime.common-lisp.dev/
https://www.orgroam.com/
https://www.kernel.org/faq.html
https://github.com/doomemacs/doomemacs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/installation_guide/s1-boot-init-shutdown-process
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/installation_guide/s1-boot-init-shutdown-process
https://arxiv.org/abs/2008.06030
https://github.com/rougier/nano-emacs
https://www.jwz.org/doc/emacs-timeline.html


I. Appendix
I.I. Code
All the code of the project, provided under the Appendix I.I, is licensed under the GPL-3 license defined under the Appendix I.I.I.

I.I.I. LICENSE (GPL-3)

Code: /LICENSE
1   GNU GENERAL PUBLIC LICENSE
2                        Version 3, 29 June 2007
3

4  Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5  Everyone is permitted to copy and distribute verbatim copies
6  of this license document, but changing it is not allowed.
7

8                             Preamble
9

10   The GNU General Public License is a free, copyleft license for
11 software and other kinds of works.
12

13   The licenses for most software and other practical works are designed
14 to take away your freedom to share and change the works.  By contrast,
15 the GNU General Public License is intended to guarantee your freedom to
16 share and change all versions of a program--to make sure it remains free
17 software for all its users.  We, the Free Software Foundation, use the
18 GNU General Public License for most of our software; it applies also to
19 any other work released this way by its authors.  You can apply it to
20 your programs, too.
21

22   When we speak of free software, we are referring to freedom, not
23 price.  Our General Public Licenses are designed to make sure that you
24 have the freedom to distribute copies of free software (and charge for
25 them if you wish), that you receive source code or can get it if you
26 want it, that you can change the software or use pieces of it in new
27 free programs, and that you know you can do these things.
28

29   To protect your rights, we need to prevent others from denying you
30 these rights or asking you to surrender the rights.  Therefore, you have
31 certain responsibilities if you distribute copies of the software, or if
32 you modify it: responsibilities to respect the freedom of others.
33

34   For example, if you distribute copies of such a program, whether
35 gratis or for a fee, you must pass on to the recipients the same
36 freedoms that you received.  You must make sure that they, too, receive
37 or can get the source code.  And you must show them these terms so they
38 know their rights.
39

40   Developers that use the GNU GPL protect your rights with two steps:
41 (1) assert copyright on the software, and (2) offer you this License
42 giving you legal permission to copy, distribute and/or modify it.
43

44   For the developers' and authors' protection, the GPL clearly explains
45 that there is no warranty for this free software.  For both users' and
46 authors' sake, the GPL requires that modified versions be marked as
47 changed, so that their problems will not be attributed erroneously to
48 authors of previous versions.
49

50   Some devices are designed to deny users access to install or run
51 modified versions of the software inside them, although the manufacturer
52 can do so.  This is fundamentally incompatible with the aim of
53 protecting users' freedom to change the software.  The systematic
54 pattern of such abuse occurs in the area of products for individuals to
55 use, which is precisely where it is most unacceptable.  Therefore, we
56 have designed this version of the GPL to prohibit the practice for those
57 products.  If such problems arise substantially in other domains, we
58 stand ready to extend this provision to those domains in future versions
59 of the GPL, as needed to protect the freedom of users.
60

16



61   Finally, every program is threatened constantly by software patents.
62 States should not allow patents to restrict development and use of
63 software on general-purpose computers, but in those that do, we wish to
64 avoid the special danger that patents applied to a free program could
65 make it effectively proprietary.  To prevent this, the GPL assures that
66 patents cannot be used to render the program non-free.
67

68   The precise terms and conditions for copying, distribution and
69 modification follow.
70

71                        TERMS AND CONDITIONS
72

73   0. Definitions.
74

75   "This License" refers to version 3 of the GNU General Public License.
76

77   "Copyright" also means copyright-like laws that apply to other kinds of
78 works, such as semiconductor masks.
79

80   "The Program" refers to any copyrightable work licensed under this
81 License.  Each licensee is addressed as "you".  "Licensees" and
82 "recipients" may be individuals or organizations.
83

84   To "modify" a work means to copy from or adapt all or part of the work
85 in a fashion requiring copyright permission, other than the making of an
86 exact copy.  The resulting work is called a "modified version" of the
87 earlier work or a work "based on" the earlier work.
88

89   A "covered work" means either the unmodified Program or a work based
90 on the Program.
91

92   To "propagate" a work means to do anything with it that, without
93 permission, would make you directly or secondarily liable for
94 infringement under applicable copyright law, except executing it on a
95 computer or modifying a private copy.  Propagation includes copying,
96 distribution (with or without modification), making available to the
97 public, and in some countries other activities as well.
98

99   To "convey" a work means any kind of propagation that enables other
100 parties to make or receive copies.  Mere interaction with a user through
101 a computer network, with no transfer of a copy, is not conveying.
102

103   An interactive user interface displays "Appropriate Legal Notices"
104 to the extent that it includes a convenient and prominently visible
105 feature that (1) displays an appropriate copyright notice, and (2)
106 tells the user that there is no warranty for the work (except to the
107 extent that warranties are provided), that licensees may convey the
108 work under this License, and how to view a copy of this License.  If
109 the interface presents a list of user commands or options, such as a
110 menu, a prominent item in the list meets this criterion.
111

112   1. Source Code.
113

114   The "source code" for a work means the preferred form of the work
115 for making modifications to it.  "Object code" means any non-source
116 form of a work.
117

118   A "Standard Interface" means an interface that either is an official
119 standard defined by a recognized standards body, or, in the case of
120 interfaces specified for a particular programming language, one that
121 is widely used among developers working in that language.
122

123   The "System Libraries" of an executable work include anything, other
124 than the work as a whole, that (a) is included in the normal form of
125 packaging a Major Component, but which is not part of that Major
126 Component, and (b) serves only to enable use of the work with that
127 Major Component, or to implement a Standard Interface for which an
128 implementation is available to the public in source code form.  A

17



129 "Major Component", in this context, means a major essential component
130 (kernel, window system, and so on) of the specific operating system
131 (if any) on which the executable work runs, or a compiler used to
132 produce the work, or an object code interpreter used to run it.
133

134   The "Corresponding Source" for a work in object code form means all
135 the source code needed to generate, install, and (for an executable
136 work) run the object code and to modify the work, including scripts to
137 control those activities.  However, it does not include the work's
138 System Libraries, or general-purpose tools or generally available free
139 programs which are used unmodified in performing those activities but
140 which are not part of the work.  For example, Corresponding Source
141 includes interface definition files associated with source files for
142 the work, and the source code for shared libraries and dynamically
143 linked subprograms that the work is specifically designed to require,
144 such as by intimate data communication or control flow between those
145 subprograms and other parts of the work.
146

147   The Corresponding Source need not include anything that users
148 can regenerate automatically from other parts of the Corresponding
149 Source.
150

151   The Corresponding Source for a work in source code form is that
152 same work.
153

154   2. Basic Permissions.
155

156   All rights granted under this License are granted for the term of
157 copyright on the Program, and are irrevocable provided the stated
158 conditions are met.  This License explicitly affirms your unlimited
159 permission to run the unmodified Program.  The output from running a
160 covered work is covered by this License only if the output, given its
161 content, constitutes a covered work.  This License acknowledges your
162 rights of fair use or other equivalent, as provided by copyright law.
163

164   You may make, run and propagate covered works that you do not
165 convey, without conditions so long as your license otherwise remains
166 in force.  You may convey covered works to others for the sole purpose
167 of having them make modifications exclusively for you, or provide you
168 with facilities for running those works, provided that you comply with
169 the terms of this License in conveying all material for which you do
170 not control copyright.  Those thus making or running the covered works
171 for you must do so exclusively on your behalf, under your direction
172 and control, on terms that prohibit them from making any copies of
173 your copyrighted material outside their relationship with you.
174

175   Conveying under any other circumstances is permitted solely under
176 the conditions stated below.  Sublicensing is not allowed; section 10
177 makes it unnecessary.
178

179   3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180

181   No covered work shall be deemed part of an effective technological
182 measure under any applicable law fulfilling obligations under article
183 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 similar laws prohibiting or restricting circumvention of such
185 measures.
186

187   When you convey a covered work, you waive any legal power to forbid
188 circumvention of technological measures to the extent such circumvention
189 is effected by exercising rights under this License with respect to
190 the covered work, and you disclaim any intention to limit operation or
191 modification of the work as a means of enforcing, against the work's
192 users, your or third parties' legal rights to forbid circumvention of
193 technological measures.
194

195   4. Conveying Verbatim Copies.
196

197   You may convey verbatim copies of the Program's source code as you
198 receive it, in any medium, provided that you conspicuously and

18



199 appropriately publish on each copy an appropriate copyright notice;
200 keep intact all notices stating that this License and any
201 non-permissive terms added in accord with section 7 apply to the code;
202 keep intact all notices of the absence of any warranty; and give all
203 recipients a copy of this License along with the Program.
204

205   You may charge any price or no price for each copy that you convey,
206 and you may offer support or warranty protection for a fee.
207

208   5. Conveying Modified Source Versions.
209

210   You may convey a work based on the Program, or the modifications to
211 produce it from the Program, in the form of source code under the
212 terms of section 4, provided that you also meet all of these conditions:
213

214     a) The work must carry prominent notices stating that you modified
215     it, and giving a relevant date.
216

217     b) The work must carry prominent notices stating that it is
218     released under this License and any conditions added under section
219     7.  This requirement modifies the requirement in section 4 to
220     "keep intact all notices".
221

222     c) You must license the entire work, as a whole, under this
223     License to anyone who comes into possession of a copy.  This
224     License will therefore apply, along with any applicable section 7
225     additional terms, to the whole of the work, and all its parts,
226     regardless of how they are packaged.  This License gives no
227     permission to license the work in any other way, but it does not
228     invalidate such permission if you have separately received it.
229

230     d) If the work has interactive user interfaces, each must display
231     Appropriate Legal Notices; however, if the Program has interactive
232     interfaces that do not display Appropriate Legal Notices, your
233     work need not make them do so.
234

235   A compilation of a covered work with other separate and independent
236 works, which are not by their nature extensions of the covered work,
237 and which are not combined with it such as to form a larger program,
238 in or on a volume of a storage or distribution medium, is called an
239 "aggregate" if the compilation and its resulting copyright are not
240 used to limit the access or legal rights of the compilation's users
241 beyond what the individual works permit.  Inclusion of a covered work
242 in an aggregate does not cause this License to apply to the other
243 parts of the aggregate.
244

245   6. Conveying Non-Source Forms.
246

247   You may convey a covered work in object code form under the terms
248 of sections 4 and 5, provided that you also convey the
249 machine-readable Corresponding Source under the terms of this License,
250 in one of these ways:
251

252     a) Convey the object code in, or embodied in, a physical product
253     (including a physical distribution medium), accompanied by the
254     Corresponding Source fixed on a durable physical medium
255     customarily used for software interchange.
256

257     b) Convey the object code in, or embodied in, a physical product
258     (including a physical distribution medium), accompanied by a
259     written offer, valid for at least three years and valid for as
260     long as you offer spare parts or customer support for that product
261     model, to give anyone who possesses the object code either (1) a
262     copy of the Corresponding Source for all the software in the
263     product that is covered by this License, on a durable physical
264     medium customarily used for software interchange, for a price no
265     more than your reasonable cost of physically performing this
266     conveying of source, or (2) access to copy the
267     Corresponding Source from a network server at no charge.
268

19



269     c) Convey individual copies of the object code with a copy of the
270     written offer to provide the Corresponding Source.  This
271     alternative is allowed only occasionally and noncommercially, and
272     only if you received the object code with such an offer, in accord
273     with subsection 6b.
274

275     d) Convey the object code by offering access from a designated
276     place (gratis or for a charge), and offer equivalent access to the
277     Corresponding Source in the same way through the same place at no
278     further charge.  You need not require recipients to copy the
279     Corresponding Source along with the object code.  If the place to
280     copy the object code is a network server, the Corresponding Source
281     may be on a different server (operated by you or a third party)
282     that supports equivalent copying facilities, provided you maintain
283     clear directions next to the object code saying where to find the
284     Corresponding Source.  Regardless of what server hosts the
285     Corresponding Source, you remain obligated to ensure that it is
286     available for as long as needed to satisfy these requirements.
287

288     e) Convey the object code using peer-to-peer transmission, provided
289     you inform other peers where the object code and Corresponding
290     Source of the work are being offered to the general public at no
291     charge under subsection 6d.
292

293   A separable portion of the object code, whose source code is excluded
294 from the Corresponding Source as a System Library, need not be
295 included in conveying the object code work.
296

297   A "User Product" is either (1) a "consumer product", which means any
298 tangible personal property which is normally used for personal, family,
299 or household purposes, or (2) anything designed or sold for incorporation
300 into a dwelling.  In determining whether a product is a consumer product,
301 doubtful cases shall be resolved in favor of coverage.  For a particular
302 product received by a particular user, "normally used" refers to a
303 typical or common use of that class of product, regardless of the status
304 of the particular user or of the way in which the particular user
305 actually uses, or expects or is expected to use, the product.  A product
306 is a consumer product regardless of whether the product has substantial
307 commercial, industrial or non-consumer uses, unless such uses represent
308 the only significant mode of use of the product.
309

310   "Installation Information" for a User Product means any methods,
311 procedures, authorization keys, or other information required to install
312 and execute modified versions of a covered work in that User Product from
313 a modified version of its Corresponding Source.  The information must
314 suffice to ensure that the continued functioning of the modified object
315 code is in no case prevented or interfered with solely because
316 modification has been made.
317

318   If you convey an object code work under this section in, or with, or
319 specifically for use in, a User Product, and the conveying occurs as
320 part of a transaction in which the right of possession and use of the
321 User Product is transferred to the recipient in perpetuity or for a
322 fixed term (regardless of how the transaction is characterized), the
323 Corresponding Source conveyed under this section must be accompanied
324 by the Installation Information.  But this requirement does not apply
325 if neither you nor any third party retains the ability to install
326 modified object code on the User Product (for example, the work has
327 been installed in ROM).
328

329   The requirement to provide Installation Information does not include a
330 requirement to continue to provide support service, warranty, or updates
331 for a work that has been modified or installed by the recipient, or for
332 the User Product in which it has been modified or installed.  Access to a
333 network may be denied when the modification itself materially and
334 adversely affects the operation of the network or violates the rules and
335 protocols for communication across the network.
336

337   Corresponding Source conveyed, and Installation Information provided,
338 in accord with this section must be in a format that is publicly
339 documented (and with an implementation available to the public in

20



340 source code form), and must require no special password or key for
341 unpacking, reading or copying.
342

343   7. Additional Terms.
344

345   "Additional permissions" are terms that supplement the terms of this
346 License by making exceptions from one or more of its conditions.
347 Additional permissions that are applicable to the entire Program shall
348 be treated as though they were included in this License, to the extent
349 that they are valid under applicable law.  If additional permissions
350 apply only to part of the Program, that part may be used separately
351 under those permissions, but the entire Program remains governed by
352 this License without regard to the additional permissions.
353

354   When you convey a copy of a covered work, you may at your option
355 remove any additional permissions from that copy, or from any part of
356 it.  (Additional permissions may be written to require their own
357 removal in certain cases when you modify the work.)  You may place
358 additional permissions on material, added by you to a covered work,
359 for which you have or can give appropriate copyright permission.
360

361   Notwithstanding any other provision of this License, for material you
362 add to a covered work, you may (if authorized by the copyright holders of
363 that material) supplement the terms of this License with terms:
364

365     a) Disclaiming warranty or limiting liability differently from the
366     terms of sections 15 and 16 of this License; or
367

368     b) Requiring preservation of specified reasonable legal notices or
369     author attributions in that material or in the Appropriate Legal
370     Notices displayed by works containing it; or
371

372     c) Prohibiting misrepresentation of the origin of that material, or
373     requiring that modified versions of such material be marked in
374     reasonable ways as different from the original version; or
375

376     d) Limiting the use for publicity purposes of names of licensors or
377     authors of the material; or
378

379     e) Declining to grant rights under trademark law for use of some
380     trade names, trademarks, or service marks; or
381

382     f) Requiring indemnification of licensors and authors of that
383     material by anyone who conveys the material (or modified versions of
384     it) with contractual assumptions of liability to the recipient, for
385     any liability that these contractual assumptions directly impose on
386     those licensors and authors.
387

388   All other non-permissive additional terms are considered "further
389 restrictions" within the meaning of section 10.  If the Program as you
390 received it, or any part of it, contains a notice stating that it is
391 governed by this License along with a term that is a further
392 restriction, you may remove that term.  If a license document contains
393 a further restriction but permits relicensing or conveying under this
394 License, you may add to a covered work material governed by the terms
395 of that license document, provided that the further restriction does
396 not survive such relicensing or conveying.
397

398   If you add terms to a covered work in accord with this section, you
399 must place, in the relevant source files, a statement of the
400 additional terms that apply to those files, or a notice indicating
401 where to find the applicable terms.
402

403   Additional terms, permissive or non-permissive, may be stated in the
404 form of a separately written license, or stated as exceptions;
405 the above requirements apply either way.
406

407   8. Termination.
408

21



409   You may not propagate or modify a covered work except as expressly
410 provided under this License.  Any attempt otherwise to propagate or
411 modify it is void, and will automatically terminate your rights under
412 this License (including any patent licenses granted under the third
413 paragraph of section 11).
414

415   However, if you cease all violation of this License, then your
416 license from a particular copyright holder is reinstated (a)
417 provisionally, unless and until the copyright holder explicitly and
418 finally terminates your license, and (b) permanently, if the copyright
419 holder fails to notify you of the violation by some reasonable means
420 prior to 60 days after the cessation.
421

422   Moreover, your license from a particular copyright holder is
423 reinstated permanently if the copyright holder notifies you of the
424 violation by some reasonable means, this is the first time you have
425 received notice of violation of this License (for any work) from that
426 copyright holder, and you cure the violation prior to 30 days after
427 your receipt of the notice.
428

429   Termination of your rights under this section does not terminate the
430 licenses of parties who have received copies or rights from you under
431 this License.  If your rights have been terminated and not permanently
432 reinstated, you do not qualify to receive new licenses for the same
433 material under section 10.
434

435   9. Acceptance Not Required for Having Copies.
436

437   You are not required to accept this License in order to receive or
438 run a copy of the Program.  Ancillary propagation of a covered work
439 occurring solely as a consequence of using peer-to-peer transmission
440 to receive a copy likewise does not require acceptance.  However,
441 nothing other than this License grants you permission to propagate or
442 modify any covered work.  These actions infringe copyright if you do
443 not accept this License.  Therefore, by modifying or propagating a
444 covered work, you indicate your acceptance of this License to do so.
445

446   10. Automatic Licensing of Downstream Recipients.
447

448   Each time you convey a covered work, the recipient automatically
449 receives a license from the original licensors, to run, modify and
450 propagate that work, subject to this License.  You are not responsible
451 for enforcing compliance by third parties with this License.
452

453   An "entity transaction" is a transaction transferring control of an
454 organization, or substantially all assets of one, or subdividing an
455 organization, or merging organizations.  If propagation of a covered
456 work results from an entity transaction, each party to that
457 transaction who receives a copy of the work also receives whatever
458 licenses to the work the party's predecessor in interest had or could
459 give under the previous paragraph, plus a right to possession of the
460 Corresponding Source of the work from the predecessor in interest, if
461 the predecessor has it or can get it with reasonable efforts.
462

463   You may not impose any further restrictions on the exercise of the
464 rights granted or affirmed under this License.  For example, you may
465 not impose a license fee, royalty, or other charge for exercise of
466 rights granted under this License, and you may not initiate litigation
467 (including a cross-claim or counterclaim in a lawsuit) alleging that
468 any patent claim is infringed by making, using, selling, offering for
469 sale, or importing the Program or any portion of it.
470

471   11. Patents.
472

473   A "contributor" is a copyright holder who authorizes use under this
474 License of the Program or a work on which the Program is based.  The
475 work thus licensed is called the contributor's "contributor version".
476

477   A contributor's "essential patent claims" are all patent claims
478 owned or controlled by the contributor, whether already acquired or

22



479 hereafter acquired, that would be infringed by some manner, permitted
480 by this License, of making, using, or selling its contributor version,
481 but do not include claims that would be infringed only as a
482 consequence of further modification of the contributor version.  For
483 purposes of this definition, "control" includes the right to grant
484 patent sublicenses in a manner consistent with the requirements of
485 this License.
486

487   Each contributor grants you a non-exclusive, worldwide, royalty-free
488 patent license under the contributor's essential patent claims, to
489 make, use, sell, offer for sale, import and otherwise run, modify and
490 propagate the contents of its contributor version.
491

492   In the following three paragraphs, a "patent license" is any express
493 agreement or commitment, however denominated, not to enforce a patent
494 (such as an express permission to practice a patent or covenant not to
495 sue for patent infringement).  To "grant" such a patent license to a
496 party means to make such an agreement or commitment not to enforce a
497 patent against the party.
498

499   If you convey a covered work, knowingly relying on a patent license,
500 and the Corresponding Source of the work is not available for anyone
501 to copy, free of charge and under the terms of this License, through a
502 publicly available network server or other readily accessible means,
503 then you must either (1) cause the Corresponding Source to be so
504 available, or (2) arrange to deprive yourself of the benefit of the
505 patent license for this particular work, or (3) arrange, in a manner
506 consistent with the requirements of this License, to extend the patent
507 license to downstream recipients.  "Knowingly relying" means you have
508 actual knowledge that, but for the patent license, your conveying the
509 covered work in a country, or your recipient's use of the covered work
510 in a country, would infringe one or more identifiable patents in that
511 country that you have reason to believe are valid.
512

513   If, pursuant to or in connection with a single transaction or
514 arrangement, you convey, or propagate by procuring conveyance of, a
515 covered work, and grant a patent license to some of the parties
516 receiving the covered work authorizing them to use, propagate, modify
517 or convey a specific copy of the covered work, then the patent license
518 you grant is automatically extended to all recipients of the covered
519 work and works based on it.
520

521   A patent license is "discriminatory" if it does not include within
522 the scope of its coverage, prohibits the exercise of, or is
523 conditioned on the non-exercise of one or more of the rights that are
524 specifically granted under this License.  You may not convey a covered
525 work if you are a party to an arrangement with a third party that is
526 in the business of distributing software, under which you make payment
527 to the third party based on the extent of your activity of conveying
528 the work, and under which the third party grants, to any of the
529 parties who would receive the covered work from you, a discriminatory
530 patent license (a) in connection with copies of the covered work
531 conveyed by you (or copies made from those copies), or (b) primarily
532 for and in connection with specific products or compilations that
533 contain the covered work, unless you entered into that arrangement,
534 or that patent license was granted, prior to 28 March 2007.
535

536   Nothing in this License shall be construed as excluding or limiting
537 any implied license or other defenses to infringement that may
538 otherwise be available to you under applicable patent law.
539

540   12. No Surrender of Others' Freedom.
541

542   If conditions are imposed on you (whether by court order, agreement or
543 otherwise) that contradict the conditions of this License, they do not
544 excuse you from the conditions of this License.  If you cannot convey a
545 covered work so as to satisfy simultaneously your obligations under this
546 License and any other pertinent obligations, then as a consequence you may
547 not convey it at all.  For example, if you agree to terms that obligate you
548 to collect a royalty for further conveying from those to whom you convey
549 the Program, the only way you could satisfy both those terms and this

23



550 License would be to refrain entirely from conveying the Program.
551

552   13. Use with the GNU Affero General Public License.
553

554   Notwithstanding any other provision of this License, you have
555 permission to link or combine any covered work with a work licensed
556 under version 3 of the GNU Affero General Public License into a single
557 combined work, and to convey the resulting work.  The terms of this
558 License will continue to apply to the part which is the covered work,
559 but the special requirements of the GNU Affero General Public License,
560 section 13, concerning interaction through a network will apply to the
561 combination as such.
562

563   14. Revised Versions of this License.
564

565   The Free Software Foundation may publish revised and/or new versions of
566 the GNU General Public License from time to time.  Such new versions will
567 be similar in spirit to the present version, but may differ in detail to
568 address new problems or concerns.
569

570   Each version is given a distinguishing version number.  If the
571 Program specifies that a certain numbered version of the GNU General
572 Public License "or any later version" applies to it, you have the
573 option of following the terms and conditions either of that numbered
574 version or of any later version published by the Free Software
575 Foundation.  If the Program does not specify a version number of the
576 GNU General Public License, you may choose any version ever published
577 by the Free Software Foundation.
578

579   If the Program specifies that a proxy can decide which future
580 versions of the GNU General Public License can be used, that proxy's
581 public statement of acceptance of a version permanently authorizes you
582 to choose that version for the Program.
583

584   Later license versions may give you additional or different
585 permissions.  However, no additional obligations are imposed on any
586 author or copyright holder as a result of your choosing to follow a
587 later version.
588

589   15. Disclaimer of Warranty.
590

591   THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599

600   16. Limitation of Liability.
601

602   IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 SUCH DAMAGES.
611

612   17. Interpretation of Sections 15 and 16.
613

614   If the disclaimer of warranty and limitation of liability provided
615 above cannot be given local legal effect according to their terms,
616 reviewing courts shall apply local law that most closely approximates
617 an absolute waiver of all civil liability in connection with the
618 Program, unless a warranty or assumption of liability accompanies a

24



619 copy of the Program in return for a fee.
620

621                      END OF TERMS AND CONDITIONS
622

623             How to Apply These Terms to Your New Programs
624

625   If you develop a new program, and you want it to be of the greatest
626 possible use to the public, the best way to achieve this is to make it
627 free software which everyone can redistribute and change under these terms.
628

629   To do so, attach the following notices to the program.  It is safest
630 to attach them to the start of each source file to most effectively
631 state the exclusion of warranty; and each file should have at least
632 the "copyright" line and a pointer to where the full notice is found.
633

634     <one line to give the program's name and a brief idea of what it does.>
635     Copyright (C) <year>  <name of author>
636

637     This program is free software: you can redistribute it and/or modify
638     it under the terms of the GNU General Public License as published by
639     the Free Software Foundation, either version 3 of the License, or
640     (at your option) any later version.
641

642     This program is distributed in the hope that it will be useful,
643     but WITHOUT ANY WARRANTY; without even the implied warranty of
644     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
645     GNU General Public License for more details.
646

647     You should have received a copy of the GNU General Public License
648     along with this program.  If not, see <https://www.gnu.org/licenses/>.
649

650 Also add information on how to contact you by electronic and paper mail.
651

652   If the program does terminal interaction, make it output a short
653 notice like this when it starts in an interactive mode:
654

655     <program>  Copyright (C) <year>  <name of author>
656     This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657     This is free software, and you are welcome to redistribute it
658     under certain conditions; type `show c' for details.
659

660 The hypothetical commands `show w' and `show c' should show the appropriate
661 parts of the General Public License.  Of course, your program's commands
662 might be different; for a GUI interface, you would use an "about box".
663

664   You should also get your employer (if you work as a programmer) or school,
665 if any, to sign a "copyright disclaimer" for the program, if necessary.
666 For more information on this, and how to apply and follow the GNU GPL, see
667 <https://www.gnu.org/licenses/>.
668

669   The GNU General Public License does not permit incorporating your program
670 into proprietary programs.  If your program is a subroutine library, you
671 may consider it more useful to permit linking proprietary applications with
672 the library.  If this is what you want to do, use the GNU Lesser General
673 Public License instead of this License.  But first, please read
674 <https://www.gnu.org/licenses/why-not-lgpl.html>.

I.I.II. config.org

Code: /config.org
1 #    Kudu --- A fully functioning Gnu Emacs system
2 #    Copyright (C) 2023  Joar von Arndt
3 #
4 #   This program is free software: you can redistribute it and/or modify
5 #   it under the terms of the GNU General Public License as published by
6 #   the Free Software Foundation, either version 3 of the License, or

25



7 #   (at your option) any later version.
8

9 #   This program is distributed in the hope that it will be useful,
10 #   but WITHOUT ANY WARRANTY; without even the implied warranty of
11 #   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 #   GNU General Public License for more details.
13

14 #   You should have received a copy of the GNU General Public License
15 #   along with this program.  If not, see <https://www.gnu.org/licenses/>.
16

17 #+title: Kudu
18 #+author: Joar von Arndt
19 #+STARTUP: overview
20 * What is Kudu?
21 [[https://github.com/JanJoar/Kudu-Emacs/blob/main/Logos/KuduLogo_red.svg]]
22

23 The complexity and extensibility of GNU Emacs, paired with its lack of integration with contemporary
technical standards, has driven the development of Emacs distributions that contain packages and
functionality not included by the GNU project. Kudu is a project meant to expand the scope of such
distributions to every user-facing part of the operating system using dialects of the lisp programming
language. This allows the user to easily and seamlessly "live in Emacs", using tools integrated directly
into the program, such as the Emacs X Window Manager (EXWM), guix.el, and the Emacs Application Framework
(EAF). Earlier distributions have focused on integrating Emacs within an otherwise alien system, like
DOOM's and Spacemacs' focus on keybinds derived from the Vi editor, to maximize the number of workflows
that the distribution could be incorporated into. Kudu does not take this approach, but rather empowers
the user to construct their own system within a completely configurable system. All tools are written in
lisp, the simple syntax of which allows for a seamless experience and self-sufficient system capable of
performing all the daily tasks of modern life. It is hoped that this declarative and atomic system offered
by GNU Guix will allow more secure and maintainable infrastructure.

24

25

26 The origin for the name is the kudu, an antelope similar to that of the Gnu, the namesake of the GNU
Project. Kudu is not part of the GNU Project, and its developers are not members of GNU or the FSF. However
we share a positive opinion of free software and therefore want to contribute to its mainstream adoption.

27 * Configuration
28

29 ** Use-package
30

31 Probably one of the most useful packages, even if not very prominent when using emacs, is ~use-package~. It
allows you to declaratively write your configuration and have the included emacs package manager download
them for you, and also have configurations for packages only run when packages are loaded, similarly
to ~(with-eval-after-load ...)~. The variables set here simply enable this behaviour. If the version of
Emacs is older than Emacs 29, ~use-package~ won't be available by default. It is therefore installed here
as well.

32

33 The ~diminish~ package hides certain minor modes from being shown in the mode-line and is not installed
by default. For this reason its used to check if Kudu has been run before, and therefore if it needs to
update its package repos. Feel free to perform this check on any other package, or remove it entirely,
but beware that ~(package-refresh-contents)~ must be run before the other ~use-package~ declarations for
~package.el~ to install all the other packages needed.

34

35 #+BEGIN_SRC elisp
36   (setq use-package-always-defer t
37         use-package-always-ensure t
38         use-package-verbose t)
39

40   (unless (package-installed-p 'diminish)
41       (package-refresh-contents)
42       (package-install 'use-package)
43       (package-install 'diminish))
44 #+END_SRC
45

46 ** Auto-compile
47

26



48 Compiles elisp files to improve the speed and responsiveness of Emacs at the cost of first-time startup
time. The settings in ~init.el~ makes sure that updated elisp files take priority over older, compiled
files.

49

50 #+BEGIN_SRC elisp
51     (use-package auto-compile
52       :ensure t
53       :init
54       (auto-compile-on-load-mode 1)
55       (auto-compile-on-save-mode 1))
56

57   (setq native-comp-async-report-warnings-errors nil)
58 #+END_SRC
59

60 ** Backups
61

62 Emacs usually stores backups in the same directory as the files themselves, cluttering up your nice and
tidy system. This moves them to a dedicated directory within ~.emacs.d~.

63

64 #+BEGIN_SRC elisp
65   (setq backup-directory-alist '(("." . "~/.emacs.d/backups")))
66 #+END_SRC
67

68 ** EXWM
69 The Emacs X Window Manager allows you to use your entire desktop within emacs. Other windows are managed

like traditional emacs buffers, and different workspaces are implemented using separate emacs frames.
This is arguably the largest change to using traditional window managers and desktop environments, and it
transforms emacs from simply a program that can do everything to /the/ way to interact with one's computer.

70

71 However, Emacs can still be used without constituting the entire system. Therefore EXWM should only be
loaded if no other window manager is running. That way startup time isn't wasted whenever the user wants
to run Emacs in the terminal, on a computer using a desktop environment, or another window manager.

72

73 #+BEGIN_SRC elisp
74   (use-package exwm
75     :init
76

77     ;; EXWM related functions
78

79     (defun xrandr-find-monitor-names ()
80       "Returns a list of connected monitors"
81       (let ((xrandr-contents nil) (monitor-names nil))
82         (shell-command "xrandr" "*xrandr-output*")
83         (switch-to-buffer "*xrandr-output*")
84         (setq xrandr-contents (buffer-string))
85         (kill-buffer "*xrandr-output*")
86         (setq xrandr-contents (replace-regexp-in-string "\\(.* connected\\).*\n\\|.*\n" "\\1" xrandr-

contents))
87         (remove "" (split-string xrandr-contents " connected"))))
88

89     (defun exwm-monitors-format ()
90       "Formats the list from xrandr-find-monitor-names to apply EXWM workspaces"
91       (let ((monitors (xrandr-find-monitor-names)) (counter 0) (return-value nil))
92         (while monitors
93           (push counter return-value)
94           (push (car monitors) return-value)
95           (setq counter (+ counter 1))
96           (setq monitors (cdr monitors)))
97         (nreverse return-value)))
98

99     (setq switch-to-buffer-obey-display-actions t)
100     (defvar exwm-is-running nil)
101     (shell-command "wmctrl -m ; echo $status" "*window-manager*" "*window-manager-error*")
102

103     (when (and
104            (get-buffer "*window-manager-error*") ;; The shell command has to both encounter an error and

a running in an X environment.
105            (eq window-system 'x))

27



106       (setq exwm-is-running t)
107

108       (display-battery-mode 1)
109       (setq display-time-day-and-date t)
110       (display-time-mode 1)
111

112       ;; Changes the name of EXWM-buffers to the corresponding window-name rather than *EXWM*<N>.
113       (add-hook 'exwm-update-class-hook
114                 (lambda ()
115                   (exwm-workspace-rename-buffer exwm-class-name)))
116

117       ;; Configure monitors
118       (require 'exwm-randr)
119       (setq exwm-randr-workspace-monitor-plist (exwm-monitors-format))
120       (setq exwm-workspace-number (length (xrandr-find-monitor-names)))
121       (shell-command "bash ~/.screenlayout/desktop.sh")
122       (setq exwm-workspace-number (/ (length (exwm-monitors-format)) 2))
123       (exwm-randr-enable)
124

125       ;; These  keys will always be sent to EXWM rather than to the X window.
126       (setq exwm-input-prefix-keys
127             '(?\C-x
128               ?\C-g
129               ?\M-x
130               ?\M-z))
131

132       ;; Sends the key after C-q directly to the X window.
133       ;; (define-key exwm-mode-map [?\C-q] 'exwm-input-send-next-key)
134

135       (setq exwm-input-global-keys
136             `(
137               ([?\s-r] . exwm-reset)
138               ([s-left] . windmove-left)
139               ([s-right] . windmove-right)
140               ([s-up] . windmove-up)
141               ([s-down] . windmove-down)
142               ([?\s-w] . exwm-workspace-switch)
143               ([?\C-q] . exwm-input-send-next-key)
144               ([?\s-a] . (lambda (command)
145                            (interactive (list (read-shell-command " λ ")))
146                            (start-process-shell-command command nil command)))
147               ([?\s-w] . exwm-workspace-switch)
148               ([?\s-u] . (lambda ()
149                            (interactive)
150                            (shell-command "brightnessctl --quiet --min-value set +10")))
151               ([?\s-d] . (lambda ()
152                            (interactive)
153                            (shell-command "brightnessctl --quiet --min-value set 10-")))
154               ))
155       ;; Actually starts EXWM
156       (exwm-enable))
157

158     (when (get-buffer "*window-manager*")
159       (kill-buffer "*window-manager*"))
160     (when (get-buffer "*window-manager-error*")
161       (kill-buffer "*window-manager-error*")))
162 #+END_SRC
163

164 ** General visual elements
165 Visible bell changes the otherwise quite jarring bell sound into a visual flash on it top and bottom of the

emacs frame. ~prettify-symbols-mode~ allows certain major modes to change the appearance of strings, the
classic example being the Greek letter lambda in lisp-modes for lambda calculus. ~pixel-scroll-precision-
mode~ allows you to scroll past things like images without buffers jumping around all the time.

166

167 #+BEGIN_SRC elisp
168   (setq visible-bell t
169         global-prettify-symbols-mode 1
170         pixel-scroll-precision-mode t)
171     (global-display-line-numbers-mode)
172 #+END_SRC
173

28



174 Solaire-mode makes it easy to distinguish between warnings, popups and messages by tinting the background
of those buffers slightly darker, as long as the current theme supports it.

175

176 #+BEGIN_SRC elisp
177         (use-package solaire-mode
178           :init
179           (solaire-global-mode))
180         (setq pixel-scroll-precision-mode t)
181 #+END_SRC
182

183 Formats tabs to Linux-kernel standards and keeps them so using the ~aggressive-indent~ package.
184

185 #+BEGIN_SRC elisp
186   (setq-default tab-width 8)
187   (setq-default standard-indent 8)
188   (setq-default indent-tabs-mode nil)
189

190   (use-package aggressive-indent
191     :diminish aggressive-indent-mode
192     :init (global-aggressive-indent-mode))
193 #+END_SRC
194

195 Enable mouse use when running Emacs in a terminal emulator.
196

197 #+BEGIN_SRC elisp
198   (xterm-mouse-mode)
199 #+END_SRC
200

201 Without this setting emacs sometimes asks for confirmation via a "Yes or no" prompt, and sometimes "y or
n". This is generally difficult to predict, and so this setting forces the message to always send "y or
n" forms, like most programs run in a terminal.

202

203 #+BEGIN_SRC elisp
204   (defalias 'yes-or-no-p 'y-or-n-p)
205 #+END_SRC
206

207 The default Emacs mode-line is a bit busy and certain elements of it are difficult to intuitively understand.
This simplifies it considerably to make it more readable and also adds a header line.

208

209 #+BEGIN_SRC elisp
210   (defun mode-line-padding ()
211     (let ((r-length (length (format-mode-line mode-line-end-spaces))))
212       (propertize " "
213                   'display `(space :align-to (- right ,r-length)))))
214

215   (setq-default mode-line-format
216               '(
217                 "|"
218                 "%e"
219                 (:eval (unless (string-match-p "\\*.*\\*" (buffer-name))
220                     (let* ((read-only (and buffer-read-only (buffer-file-name)))
221                            (modified (buffer-modified-p)))
222                       (propertize
223                        (if read-only "  " (if modified " !" "  "))))))
224                 " "
225                 (:eval (propertize (format "%s" (buffer-name)) 'face 'bold))
226                 " "
227                 (:eval (mode-line-padding))
228                 (:eval (setq mode-line-end-spaces mode-line-misc-info))
229                 ))
230   (setq-default header-line-format
231                 '(
232                   "  "
233                   (:eval (propertize (format "%s" mode-name) 'face 'bold))
234                   " "
235                   ))
236 #+END_SRC
237

238 Adds as nicely formated clock in all cases, even when not running in EXWM.

29



239

240 #+BEGIN_SRC elisp
241   (setq display-time-default-load-average nil)
242   (setq display-time-24hr-format t)
243   (display-time-mode 1)
244 #+END_SRC
245

246 When editing just one window, left-aligned text is awkwardly too far to the left. The ~perfect-margin~
package fixes this by centering the contents of the window when only one is present.

247

248 #+BEGIN_SRC elisp
249   (use-package perfect-margin
250     :custom
251     (perfect-margin-visible-width 128)
252     :init
253     ;; enable perfect-mode
254     (unless exwm-is-running (perfect-margin-mode t))
255     ;; auto-center minibuffer windows
256     (setq perfect-margin-ignore-filters nil)
257     ;; auto-center special windows
258     (setq perfect-margin-ignore-regexps nil))
259 #+END_SRC
260

261 ~rainbow-delimiters~ differentiates layers of parentheses using different colours so that they can be
identified at a glance.

262

263 #+BEGIN_SRC elisp
264   (use-package rainbow-delimiters
265     :init (add-hook 'prog-mode-hook #'rainbow-delimiters-mode))
266 #+END_SRC
267

268 ~smartparens~ is intended to help in a similar way by highlighting the current sexp.
269

270 #+BEGIN_SRC elisp
271   (use-package smartparens
272     :hook
273     (prog-mode . smartparens-mode)
274     (text-mode . smartparens-mode)
275     :init
276     (require 'smartparens-config))
277 #+END_SRC
278

279 Adds little icons for completion frameworks.
280

281 #+BEGIN_SRC elisp
282   (use-package svg-lib)
283   (use-package kind-icon
284     :after corfu
285     :custom (kind-icon-default-face 'corfu-default)
286     :init (add-to-list 'corfu-margin-formatters #'kind-icon-margin-formatter)
287     (unless (display-graphic-p)
288       (setq kind-icon-use-icons nil)))
289 #+END_SRC
290

291 Emacs is a wonderful alternative to a terminal, encompassing [[https://www.masteringemacs.org/article/
running-shells-in-emacs-overview][many of the features]] seen in modern terminals. For a cleaner look,
this hides the mode-line in windows used to interact with shells.

292

293 #+BEGIN_SRC elisp
294   (use-package hide-mode-line
295     :hook
296     (eat-mode . hide-mode-line-mode)
297     (term-mode . hide-mode-line-mode)
298     (eshell-mode . hide-mode-line-mode))
299 #+END_SRC
300

301 ** Dashboard
302

30



303 Configures the all-important emacs dashboard that shows up on startup.
304

305 #+BEGIN_SRC elisp
306   (use-package dashboard
307     :init
308     (dashboard-setup-startup-hook)
309     (setq dashboard-icon-type 'all-the-icons)
310     (setq dashboard-banner-logo-title "Welcome to Kudu Emacs!")
311     (setq dashboard-center-content 'middle)
312     (setq dashboard-startup-banner
313           (if (window-system)
314               Kudu-gui-logo
315             "~/.emacs.d/Logos/KuduLogo_text.txt"))
316     (setq compilation-ask-about-save nil)
317     (setq dashboard-show-shortcuts nil)
318     (setq dashboard-items '((recents . 5)))
319     (setq dashboard-set-navigator nil)
320     (setq dashboard-set-init-info t)
321     (setq dashboard-set-footer nil)
322     (dashboard-setup-startup-hook)
323

324     (add-hook  'dashboard-mode-hook (lambda () (display-line-numbers-mode -1))))
325 #+END_SRC
326

327 ** Completion
328

329 *** Corfu
330

331 In-buffer code completion using ~corfu~.
332 By default ~corfu~ only works in a GUI environment, but the ~corfu-terminal~ package allows for use when

run using the ~-nw~ flag.
333

334 #+BEGIN_SRC elisp
335   (use-package corfu
336     :custom
337     (setq corfu-auto t)
338     :init
339     (global-corfu-mode)
340     (setq corfu-popupinfo-delay 0.5)
341     (corfu-popupinfo-mode +1))
342

343   (use-package corfu-terminal
344       :init
345       (unless (display-graphic-p)
346         (corfu-terminal-mode +1)))
347   #+END_SRC
348

349 *** Cape
350

351   ~corfu~ does not provide candidates for completion, but this is provided by ~cape~, or the Completion
At Point Extensions package.

352

353   #+BEGIN_SRC elisp
354       (use-package cape
355         ;; Bind dedicated completion commands
356         ;; Alternative prefix keys: C-c p, M-p, M-+, ...
357         :bind (("C-c p p" . completion-at-point) ;; capf
358                ("C-c p t" . complete-tag)        ;; etags
359                ("C-c p d" . cape-dabbrev)        ;; or dabbrev-completion
360                ("C-c p h" . cape-history)
361                ("C-c p f" . cape-file)
362                ("C-c p k" . cape-keyword)
363                ("C-c p s" . cape-symbol)
364                ("C-c p a" . cape-abbrev)
365                ("C-c p l" . cape-line)
366                ("C-c p w" . cape-dict)
367                ("C-c p \\" . cape-tex)
368                ("C-c p _" . cape-tex)
369                ("C-c p ^" . cape-tex)
370                ("C-c p &" . cape-sgml)

31



371                ("C-c p r" . cape-rfc1345))
372         :init
373         (add-to-list 'completion-at-point-functions #'cape-dabbrev)
374         (add-to-list 'completion-at-point-functions #'cape-file)
375         (add-to-list 'completion-at-point-functions #'cape-elisp-block)
376         (add-to-list 'completion-at-point-functions #'cape-history)
377         (add-to-list 'completion-at-point-functions #'cape-keyword))
378  #+END_SRC
379

380 *** Minibuffer Completion
381

382  Uses ~vertico~ to show minibuffer completion, and ~marginalia~ and ~orderless~ to format it.
383

384  #+BEGIN_SRC elisp
385      (use-package vertico
386        :init
387        (vertico-mode)
388        :config
389        (setq vertico-count 10)
390        (vertico-indexed-mode)
391        (vertico-mouse-mode))
392

393      (use-package marginalia
394        :hook (vertico-mode . marginalia-mode))
395

396      (use-package orderless
397      :custom
398      (completion-styles '(orderless basic prescient))
399      (completion-category-overrides '((file (styles basic partial-completion)))))
400 #+END_SRC
401

402 *** Prescient
403

404 Shows those completion results that are hopefully most useful, both in the minibuffer and the main buffer.
405

406 #+BEGIN_SRC elisp
407   (use-package prescient
408     :init
409     (setq prescient-persist-mode t)
410     (setq prescient-history-length 5)
411     (setq prescient-sort-full-matches-first t))
412   (use-package corfu-prescient
413     :init (corfu-prescient-mode +1))
414   (use-package vertico-prescient
415     :init (vertico-prescient-mode +1))
416 #+END_SRC
417

418 *** Consult
419

420 ~consult~ provides various functions that integrates with the completion API.
421

422 #+BEGIN_SRC elisp
423   (use-package consult
424     :bind (;; C-c bindings in `mode-specific-map'
425            ("C-c M-x" . consult-mode-command)
426            ("C-c h" . consult-history)
427            ("C-c k" . consult-kmacro)
428            ("C-c m" . consult-man)
429            ("C-c i" . consult-info)
430            ([remap Info-search] . consult-info)
431            ;; C-x bindings in `ctl-x-map'
432            ("C-x M-:" . consult-complex-command)     ;; orig. repeat-complex-command
433            ("C-x b" . consult-buffer)                ;; orig. switch-to-buffer
434            ("C-x 4 b" . consult-buffer-other-window) ;; orig. switch-to-buffer-other-window
435            ("C-x 5 b" . consult-buffer-other-frame)  ;; orig. switch-to-buffer-other-frame
436            ("C-x t b" . consult-buffer-other-tab)    ;; orig. switch-to-buffer-other-tab
437            ("C-x r b" . consult-bookmark)            ;; orig. bookmark-jump
438            ("C-x p b" . consult-project-buffer)      ;; orig. project-switch-to-buffer
439            ;; Custom M-# bindings for fast register access
440            ("M-#" . consult-register-load)

32



441            ("M-'" . consult-register-store)          ;; orig. abbrev-prefix-mark (unrelated)
442            ("C-M-#" . consult-register)
443            ;; Other custom bindings
444            ("M-y" . consult-yank-pop)                ;; orig. yank-pop
445            ;; M-g bindings in `goto-map'
446            ("M-g e" . consult-compile-error)
447            ("M-g f" . consult-flymake)               ;; Alternative: consult-flycheck
448            ("M-g g" . consult-goto-line)             ;; orig. goto-line
449            ("M-g M-g" . consult-goto-line)           ;; orig. goto-line
450            ("M-g o" . consult-outline)               ;; Alternative: consult-org-heading
451            ("M-g m" . consult-mark)
452            ("M-g k" . consult-global-mark)
453            ("M-g i" . consult-imenu)
454            ("M-g I" . consult-imenu-multi)
455            ;; M-s bindings in `search-map'
456            ("M-s d" . consult-find)                  ;; Alternative: consult-fd
457            ("M-s c" . consult-locate)
458            ("M-s g" . consult-grep)
459            ("M-s G" . consult-git-grep)
460            ("M-s r" . consult-ripgrep)
461            ("M-s l" . consult-line)
462            ("M-s L" . consult-line-multi)
463            ("M-s k" . consult-keep-lines)
464            ("M-s u" . consult-focus-lines)
465            ;; Isearch integration
466            ("M-s e" . consult-isearch-history)
467            :map isearch-mode-map
468            ("M-e" . consult-isearch-history)         ;; orig. isearch-edit-string
469            ("M-s e" . consult-isearch-history)       ;; orig. isearch-edit-string
470            ("M-s l" . consult-line)                  ;; needed by consult-line to detect isearch
471            ("M-s L" . consult-line-multi)            ;; needed by consult-line to detect isearch
472            ;; Minibuffer history
473            :map minibuffer-local-map
474            ("M-s" . consult-history)                 ;; orig. next-matching-history-element
475            ("M-r" . consult-history))                ;; orig. previous-matching-history-element
476

477     :init
478     ;; Optionally tweak the register preview window.
479     ;; This adds thin lines, sorting and hides the mode line of the window.
480     (advice-add #'register-preview :override #'consult-register-window)
481

482     ;; Use Consult to select xref locations with preview
483     (setq xref-show-xrefs-function #'consult-xref
484           xref-show-definitions-function #'consult-xref)
485

486     :config
487     ;; Optionally configure preview. The default value
488     ;; is 'any, such that any key triggers the preview.
489     ;; (setq consult-preview-key 'any)
490     ;; (setq consult-preview-key "M-.")
491     ;; (setq consult-preview-key '("S-<down>" "S-<up>"))
492     ;; For some commands and buffer sources it is useful to configure the
493     ;; :preview-key on a per-command basis using the `consult-customize' macro.
494     (consult-customize
495      consult-theme :preview-key '(:debounce 0.2 any)
496      consult-ripgrep consult-git-grep consult-grep
497      consult-bookmark consult-recent-file consult-xref
498      consult--source-bookmark consult--source-file-register
499      consult--source-recent-file consult--source-project-recent-file
500      ;; :preview-key "M-."
501      :preview-key '(:debounce 0.4 any)))
502 #+END_SRC
503

504 *** Flycheck
505

506 Tangentially related is flycheck, providing in-buffer syntax checking.
507

508 #+BEGIN_SRC elisp
509   (use-package flycheck
510     :config (global-flycheck-mode +1))
511 #+END_SRC
512

33



513 ** Org-mode
514

515 Configures Org-mode to make it more attractive and usable.
516

517 #+BEGIN_SRC elisp
518   (setq completion-cycle-threshold 2)
519   (setq tab-always-indent 'complete)
520

521   (use-package org
522     :config
523     (setq org-format-latex-options
524           (plist-put org-format-latex-options
525                      :scale 1.3
526                      ))
527     (setq org-format-latex-options
528           (plist-put org-format-latex-options
529                      :html-scale 3
530                      ))
531     (setq org-startup-indented t
532           org-toggle-pretty-entities t
533           org-hide-leading-stars t
534           org-hide-emphasis-markers t)
535     (add-hook 'text-mode-hook 'turn-on-visual-line-mode))
536

537   (use-package org-superstar
538     :hook (org-mode . org-superstar-mode))
539   (use-package org-fragtog
540     :hook (org-mode . org-fragtog-mode))
541   (use-package toc-org
542     :hook (org-mode . toc-org-mode))
543   (use-package org-appear
544     :hook (org-mode . org-appear-mode))
545   (use-package yasnippet
546     :diminish yas-minor-mode
547     :hook (org-mode . yas-minor-mode)
548     :config
549     (yas-load-directory "~/.emacs.d/snippets/"))
550   (use-package yasnippet-snippets)
551

552   (use-package valign
553     :hook (org-mode . valign-mode))
554

555   (use-package org-modern
556     :hook
557     (org-mode . org-modern-mode)
558     (org-agenda-finalize . org-modern-agenda)
559     :custom
560     (org-modern-table-horizontal 2)
561     (org-modern-table-vertical 1)
562     (org-modern-star nil)
563     (org-modern-hide-stars nil)
564     (org-modern-checkbox nil))
565

566   (unless (file-directory-p "~/.emacs.d/site-lisp/org-modern-indent")
567     (async-shell-command "git clone https://github.com/jdtsmith/org-modern-indent.git://github.com/

jdtsmith/org-modern-indent.git ~/.emacs.d/site-lisp/org-modern-indent/"))
568   (use-package org-modern-indent
569     :load-path "~/.emacs.d/site-lisp/org-modern-indent"
570     :hook (org-mode . org-modern-indent-mode))
571  #+END_SRC
572

573 ** Lisp
574

575 Emacs is an amazing environment for writing in various lisp dialects, with wonderful support out-of-the-
box. However, there are various different packages designed to improve this experience in general or in
slight, specific ways. ~lispy~ is a transformational package for editing S-expressions in a structural
way. ~Sly~ is a fork of the popular ~SLIME~ package for an integrated common lisp REPL among other things.
It is superior to ~SLIME~ because it has ASCII-art cats.

576

577 #+BEGIN_SRC elisp

34



578   (use-package paredit
579     :hook
580     (lisp-mode . paredit-mode)
581     (emacs-lisp-mode . paredit-mode)
582     (scheme-mode . paredit-mode)
583     (slime-mode . paredit-mode))
584

585   (use-package sly
586     :config
587     (setq inferior-lisp-program "sbcl"))
588

589   (setq show-paren-delay 0)
590   (show-paren-mode)
591 #+END_SRC
592

593 *** Scheme
594

595 Due to Kudu's deep integration with the GNU Guix system, it is only natural to improve the systems used to
interact with guile and scheme specifically. For this the ~guix.el~ and the wonderful ~geiser~ packages are
used, where ~guix.el~ is a magit-inspired Emacs frontend and ~geiser~ is a package aiming to improve the
scheme experience in emacs, with ~geiser-guile~ providing special support for working the /GNU Ubiquitous
Intelligent Language for Extensions/.

596

597 #+BEGIN_SRC elisp
598   (use-package guix)
599

600   (use-package geiser-guile)
601 #+END_SRC
602

603 *** Parens pairing
604

605 Most of the time when writing parentheses, brackets, and quotes we want to pair them. This significantly
improves comfort since you no longer need to stretch for modifier keys to finish of the pair. And even
if you do, ~electric-pair-mode~ will detect it and move the point past as if you had just entered the
character. This is of course not just useful for lisp, but in any context when writing pairs of brackets
or parentheses.

606

607 #+BEGIN_SRC elisp
608   (setq electric-pair-pairs '(
609                               (?\{ . ?\})
610                               (?\( . ?\))
611                               (?\[ . ?\])
612                               (?\" . ?\")))
613   (electric-pair-mode t)
614 #+END_SRC
615

616 ** File management
617

618 Dired is emacs' built in text-based file manager. It's however pretty rough around its edges, such as it
opening each directory in a separate buffer making navigation a hassle. However certain tweaks can make
it a formidable tool accessible directly within emacs. Take that n³ and midnight commander!

619

620 #+BEGIN_SRC elisp
621     (use-package openwith
622       :hook (dired-mode . openwith-mode)
623       :config
624       (setq openwith-associations (list
625                                    (list (openwith-make-extension-regexp
626                                           '("png" "jpg" "jpeg")) "eog" '(file))
627                                    (list (openwith-make-extension-regexp
628                                           '("mkv" "mp4" "avi")) "mpv" '(file)))))
629

630   (setf dired-kill-when-opening-new-dired-buffer t)
631   (setq dired-listing-switches "-aBhl  --group-directories-first")
632   (defalias 'eaf-open-in-file-manager #'dired)
633

634   (add-hook 'dired-mode-hook 'toggle-truncate-lines)

35



635 #+END_SRC
636

637 ** PDF-tools
638

639 The default "docview" mode of viewing pdfs is quite bad, and is improved immensely by the pdf-tools package.
For some this may not be enough, and it is possible to replace it with an external pdf viewer (like evince
or zathura) using the above ~openwith~ package.

640

641 #+BEGIN_SRC elisp
642   (use-package pdf-tools
643     :init
644     (pdf-loader-install)
645     (add-hook  'pdf-view-mode-hook (lambda () (display-line-numbers-mode -1))))
646   #+END_SRC
647

648 ** Magit
649

650 Magit is wonderful, and one of the killer apps that makes emacs a system than other editors or IDEs.
However it is not installed by default, so it is defined here.

651

652 #+BEGIN_SRC elisp
653   (use-package magit)
654

655   (use-package magit-todos
656     :after magit
657     :config (magit-todos-mode 1))
658

659   (use-package magit-delta
660     :after magit
661     :config (magit-delta-mode t))
662 #+END_SRC
663

664 ** Tooling
665

666 Emacs has a wonderful undo-system, but it can be hard to get an idea of how it works intuitively. ~undo-
tree~ helps with this by creating a wonderful visualization for your branching undo, well, tree.

667

668 #+BEGIN_SRC elisp
669   (use-package undo-tree
670     :init
671     (setq undo-tree-visualizer-timestamps t)
672     (setq undo-tree-auto-save-history t)
673     (unless (file-exists-p "~/.emacs.d/undo-tree")
674       (make-directory "~/.emacs.d/undo-tree"))
675     (setq undo-tree-history-directory-alist '(("." . "~/.emacs.d/undo-tree")))
676     (global-undo-tree-mode +1))
677

678 #+END_SRC
679

680 ** Functions
681

682 The sudo function raises the privilege of the current buffer to root permissions without having to close
and open it again through ~TRAMP~.

683

684 #+BEGIN_SRC elisp
685   (defun sudo ()
686     "Opens the current buffer at point with root privelages using TRAMP"
687     (interactive)
688     (let ((position (point)))
689       (find-alternate-file (concat "/sudo::"
690                                    (buffer-file-name (current-buffer))))
691       (goto-char position)))
692 #+END_SRC
693

694 Magit can sometimes create a lot of buffers for different processes that are annoying to close one by one,
this function closes all buffers whose name contains "magit".

695

36



696 #+BEGIN_SRC elisp
697   (defun kill-magit-buffers ()
698     (interactive)
699     (mapc (lambda (buffer)
700             (if (buffer-match-p ".*magit.*" buffer)
701               (kill-buffer buffer)))
702           (buffer-list)))
703 #+END_SRC
704

705 Emacs does not have a nice easy to use elisp  function for calculating the factorial of a value, this
adds it. This works out particularly nicely since the standard notation for the factorial of a value uses
prefix notation.

706

707 #+BEGIN_SRC elisp
708   (defun ! (n)
709     "An emacs function to calculate the factorial of n using the calc library"
710     (let ((output (string-to-number (calc-eval (format "%s!" n)))))
711       (kill-buffer "*Calculator*")
712       output))
713 #+END_SRC
714

715 Function for calculation the number of possible permutations and combinations respectively.
716

717 #+BEGIN_SRC elisp
718   (defun nPr (n k)
719     "A function for calculating the number of permutations in combinatorics"
720     (/
721      (! n)
722      (! (- n k))))
723

724   (defun nCr (n k)
725     "A function for calculating the number of combinations in combinatorics"
726     (/
727      (! n)
728      (* (! k) (! (- n k)))))
729 #+END_SRC
730

731 ** Emacs Application Framework
732

733 The /Emacs Application Framework/ (EAF) provides a multitude of programs, most notably a browser, that more
tigtly integrate with the Emacs than Icecat or other browsers allow for when used in conjunction with EXWM.
While they mostly are usable with a REPL-style lisp interaction, they are nevertheless incredibly useful.

734

735 #+BEGIN_SRC elisp
736     (unless (file-directory-p "~/.emacs.d/site-lisp/emacs-application-framework/")
737       (shell-command "git clone --depth=1 -b master https://github.com/emacs-eaf/emacs-application-

framework.git ~/.emacs.d/site-lisp/emacs-application-framework/"))
738   (if (get-buffer "*Shell Command Output*") (kill-buffer "*Shell Command Output*"))
739

740   (add-to-list 'load-path "~/.emacs.d/site-lisp/emacs-application-framework/")
741

742   (use-package eaf
743     :load-path "~/.emacs.d/site-lisp/emacs-application-framework"
744     :config
745     (if (display-graphic-p)
746         (require 'eaf-browser)
747       (require 'eaf-map)
748       (defalias 'browse-web #'eaf-open-browser)
749       (setq eaf-browser-default-search-engine "duckduckgo")
750       (setq eaf-browse-blank-page-url "https://duckduckgo.com")
751       (eaf-bind-key nil "M-q" eaf-browser-keybinding)
752       (setq eaf-byte-compile-apps t)))
753 #+END_SRC

I.I.III. early.init

Code: /early-init.el

37



1 ;    Kudu --- A fully functioning GNU Emacs system
2 ;    Copyright (C) 2023  Joar von Arndt
3 ;
4 ;    This program is free software: you can redistribute it and/or modify
5 ;    it under the terms of the GNU General Public License as published by
6 ;    the Free Software Foundation, either version 3 of the License, or
7 ;    (at your option) any later version.
8 ;
9 ;    This program is distributed in the hope that it will be useful,
10 ;    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 ;    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 ;    GNU General Public License for more details.
13 ;
14 ;    You should have received a copy of the GNU General Public License
15 ;    along with this program.  If not, see <https://www.gnu.org/licenses/>.
16

17 ;;; Commentary: Early optimizations mostly for improved startup times. A not-insignificant parts of are
taken from https://github.com/Stefanomarton/DotFiles/ and his wonderful improvements.

18

19 (defvar me/gc-cons-threshold 100000000)
20 (setq gc-cons-threshold most-positive-fixnum
21       gc-cons-percentage 0.6)
22 (add-hook 'emacs-startup-hook
23           (lambda ()
24             (setq gc-cons-threshold me/gc-cons-threshold
25                   gc-cons-percentage 0.1)))
26

27 (defun me/defer-garbage-collection-h ()
28   (setq gc-cons-threshold most-positive-fixnum))
29

30 (defun me/restore-garbage-collection-h ()
31   (run-at-time
32    1 nil (lambda () (setq gc-cons-threshold me/gc-cons-threshold))))
33

34 (add-hook 'minibuffer-setup-hook #'me/defer-garbage-collection-h)
35 (add-hook 'minibuffer-exit-hook #'me/restore-garbage-collection-h)
36

37 ;; Disabling these things here prevents them from ever loading.
38 (scroll-bar-mode -1)
39 (tool-bar-mode -1)
40 (tab-bar-mode -1)
41 (menu-bar-mode -1)
42 (setq inhibit-startup-screen t)
43

44 ;;; early-init.el ends here

I.I.IV. init.el

Code: /init.el
1                                         ;    Kudu --- A fully functioning GNU Emacs system
2                                         ;    Copyright (C) 2023  Joar von Arndt
3                                         ;
4                                         ;
5                                         ;    This program is free software: you can redistribute it and/

or modify
6                                         ;    it under the terms of the GNU General Public License as

published by
7                                         ;    the Free Software Foundation, either version 3 of the

License, or
8                                         ;    (at your option) any later version.
9                                         ;
10                                         ;    This program is distributed in the hope that it will be useful,
11                                         ;    but WITHOUT ANY WARRANTY; without even the implied warranty of
12                                         ;    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13                                         ;    GNU General Public License for more details.
14                                         ;
15                                         ;    You should have received a copy of the GNU General Public License

38



16                                         ;    along with this program.  If not, see <https://www.gnu.org/
licenses/>.

17

18 ;;; Commentary: This file simply serves to load other Emacs lisp files in order to neatly separate different
concepts

19

20

21 (setq load-prefer-newer t) ;; Loads the newer file if one exists. This means emacs will prioritise files
with newer changes.

22

23 (defvar Kudu-gui-logo "~/.emacs.d/Logos/KuduLogo_red.svg")
24 (shell-command "touch ~/.emacs.d/secret.org && touch ~/.emacs.d/secret.el && touch ~/.emacs.d/custom.el")
25 (kill-buffer "*Shell Command Output*")
26

27 (require 'package)
28

29 (unless (assoc-default "melpa" package-archives)
30   (add-to-list 'package-archives '("melpa" . "https://melpa.org/packages/") t))
31 (unless (assoc-default "nongnu" package-archives)
32   (add-to-list 'package-archives '("nongnu" . "https://elpa.nongnu.org/nongnu/") t))
33

34 (package-initialize)
35

36 (org-babel-load-file (expand-file-name "~/.emacs.d/secret.org")) ;; User-unique information (like E-mail
address and full name) that you might not want to share openly. Empty by default. Since the file is not
included in the Kudu repo it has to be created using touch in order to be loaded.

37 (org-babel-load-file (expand-file-name "~/.emacs.d/config.org")) ;; The main configuration file, running
commands, setting keybinds, and configuring packages.

38

39 (setq custom-file "~/.emacs.d/custom.el")
40 (load custom-file)
41

42 ;;; init.el ends here

I.I.V. install

Code: /install
1 #!/bin/sh
2

3 d=$(dirname $(readlink -f "$0"))/installer
4 emacs -nw -q -l $d/installer.el --eval "(Kudu-installer)" --chdir $d

I.I.V.I. Installer

I.I.V.I.I. bare-bones.scm

Code: /installer/bare-bones.scm
1 ;; This is an operating system configuration template
2 ;; for a "bare bones" setup, with no X11 display server.
3

4 (use-modules (gnu))
5 (use-service-modules networking ssh)
6 (use-package-modules screen ssh)
7

8 (operating-system
9   (host-name "komputilo")
10   (timezone "Europe/Berlin")
11   (locale "en_US.utf8")
12

13   ;; Boot in "legacy" BIOS mode, assuming /dev/sdX is the
14   ;; target hard disk, and "my-root" is the label of the target
15   ;; root file system.
16   (bootloader (bootloader-configuration

39



17                 (bootloader grub-bootloader)
18                 (targets '("/dev/sdX"))))
19   ;; It's fitting to support the equally bare bones ‘-nographic’
20   ;; QEMU option, which also nicely sidesteps forcing QWERTY.
21   (kernel-arguments (list "console=ttyS0,115200"))
22   (file-systems (cons (file-system
23                         (device (file-system-label "my-root"))
24                         (mount-point "/")
25                         (type "ext4"))
26                       %base-file-systems))
27

28   ;; This is where user accounts are specified.  The "root"
29   ;; account is implicit, and is initially created with the
30   ;; empty password.
31   (users (cons (user-account
32                 (name "alice")
33                 (comment "Bob's sister")
34                 (group "users")
35

36                 ;; Adding the account to the "wheel" group
37                 ;; makes it a sudoer.  Adding it to "audio"
38                 ;; and "video" allows the user to play sound
39                 ;; and access the webcam.
40                 (supplementary-groups '("wheel"
41                                         "audio" "video")))
42                %base-user-accounts))
43

44   ;; Globally-installed packages.
45   (packages (cons screen %base-packages))
46

47   ;; Add services to the baseline: a DHCP client and
48   ;; an SSH server.
49   (services (append (list (service dhcp-client-service-type)
50                           (service openssh-service-type
51                                    (openssh-configuration
52                                     (openssh openssh-sans-x)
53                                     (port-number 2222))))
54                     %base-services)))

I.I.V.I.II. config.scm

Code: /installer/config.scm
1

I.I.V.I.III. get_disks.sh

Code: /installer/get_disks.sh
1 #!/bin/sh
2 disks=$(lsblk -o NAME,TYPE -n -p -l | grep 'disk' | awk '{print $1}')
3 # Print each disk on a new line
4 echo "$disks"

I.I.V.I.IV. get_disks_test.sh

Code: /installer/get_disks_test.sh
1 #!/bin/sh
2 echo sda
3 echo sdb
4 echo sdc
5 echo hej
6 echo san

I.I.V.I.V. get_keymaps_test.sh

40



Code: /installer/get_keymaps_test.sh
1 #!/bin/sh
2 cd ./run/current-system/profile/share/keymaps
3 keys=$(find ./ -type f)
4 echo "$keys" | grep -Po '/\K([^/]+)\.map\.gz$' | sed 's/\.map\.gz$//' | sort

I.I.V.I.VI. guix_config.scm

Code: /installer/guix_config.scm
1

2

3 ;; This is an operating system configuration generated
4 ;; by the graphical installer.
5 ;;
6 ;; Once installation is complete, you can learn and modify
7 ;; this file to tweak the system configuration, and pass it
8 ;; to the 'guix system reconfigure' command to effect your
9 ;; changes.
10

11

12 ;; Indicate which modules to import to access the variables
13 ;; used in this configuration.
14 (use-modules
15  (gnu)
16  (gnu packages emacs)
17  (gnu packages emacs-xyz)
18  (gnu packages screen)
19  (gnu packages linux)
20  (gnu packages version-control)
21  (gnu packages gnuzilla)
22  (gnu packages games)
23  (gnu packages xdisorg)
24  )
25 (use-service-modules cups desktop networking ssh xorg)
26

27 (operating-system
28  (locale "en_US.utf8")
29  (timezone "$TIMEZONE")
30  (keyboard-layout (keyboard-layout "$KEYMAP"))
31  (host-name "$HOSTNAME")
32

33  (users (cons* (user-account
34                 (name "$USERNAME")
35                 (group "users")
36                 (home-directory "/home/$USERNAME")
37                 (supplementary-groups '("wheel" "netdev" "audio" "video")))
38                %base-user-accounts))
39

40  ;; Packages installed system-wide.  Users can also install packages
41  ;; under their own account: use 'guix search KEYWORD' to search
42  ;; for packages and 'guix install PACKAGE' to install a package.
43  (packages (append (list
44         (specification->package "nss-certs")
45         screen
46         emacs
47         emacs-exwm
48         wmctrl
49         brightnessctl
50         git
51         icecat
52         openttd
53         )
54                    %base-packages))
55

56  ;; Below is the list of system services.  To search for available
57  ;; services, run 'guix system search KEYWORD' in a terminal.
58  (services
59   (append (list (service gnome-desktop-service-type)
60

41



61                 ;; To configure OpenSSH, pass an 'openssh-configuration'
62                 ;; record as a second argument to 'service' below.
63                 (service openssh-service-type)
64                 (set-xorg-configuration
65                  (xorg-configuration (keyboard-layout keyboard-layout))))
66

67           ;; This is the default list of services we
68           ;; are appending to.
69           %desktop-services))
70  (bootloader (bootloader-configuration
71               (bootloader grub-bootloader)
72               (targets '("$DISK")))
73         (theme
74     (grub-theme
75       (resolution '(1920 . 1080))
76       (image (local-file "/mnt/etc/Kudu_grub_image.svg")))))
77

78  (swap-devices (list (swap-space
79                       (target (uuid
80                                "$SWAP_UUID"
81              )))))
82

83  ;; The list of file systems that get "mounted".  The unique
84  ;; file system identifiers there ("UUIDs") can be obtained
85  ;; by running 'blkid' in a terminal.
86  (file-systems (cons* (file-system
87                        (mount-point "/")
88                        (device (uuid
89                                 "$ROOT_UUID"
90         'ext4))
91                        (type "ext4")) %base-file-systems)))

I.I.V.I.VII. guix_iso.scm

Code: /installer/guix_iso.scm
1 (use-modules
2   (gnu)
3   (gnu packages emacs)
4   (gnu packages version-control)
5   )
6 (use-service-modules networking)
7 (operating-system
8   (host-name "kudu-inst")
9   (timezone "Europe/Vatican")
10   (locale "en_US.utf8")
11

12    (bootloader (bootloader-configuration
13     (bootloader grub-bootloader)
14     (targets '("$DISK")))
15     (theme
16       (grub-theme
17         (resolution '(1920 . 1080))
18         (image (local-file "/mnt/etc/Kudu_grub_image.svg")))))
19

20   (kernel-arguments (list "console=ttyS0,115200"))
21   (file-systems (cons*
22     (file-system
23       (mount-point "/")
24       (device (uuid
25         "$ROOT_UUID"
26         'ext4))
27       (type "ext4"))
28     %base-file-systems))
29

30

31   (users %base-user-accounts)
32   (packages (append (list git emacs) %base-packages))
33   (services
34     (append
35     (list (service dhcp-client-service-type))

42



36     %base-services))
37 )

I.I.V.I.VIII. installer.el

Code: /installer/installer.el
1 (require 'widget)
2

3 (defun Kudu-installer ()
4   (interactive)
5   (switch-to-buffer "*Kudu-Installer*")
6   (setup-greeting))
7

8 (defun setup-greeting ()
9   (interactive)
10   (kill-all-local-variables)
11   (let ((inhibit-read-only t))
12     (erase-buffer))
13   (remove-overlays)
14   (widget-insert (read-file-into-string "../Logos/KuduLogo_text.txt") )
15   (widget-insert "\n\n")
16   (widget-create 'push-button
17                  :notify (lambda (&rest ignore)
18                            (setup-keymap))
19                  "Setup installation")
20   (center-line)
21   (use-local-map widget-keymap)
22   (widget-setup)
23   (beginning-of-buffer)
24   (widget-forward 1))
25

26 (defun setup-keymap ()
27   (interactive)
28   (kill-all-local-variables)
29   (let ((inhibit-read-only t))
30     (erase-buffer))
31   (remove-overlays)
32   (let ((keymap ""))
33     (setq keymaps (get-nl-seperated "../installer/keymaps"))
34     (widget-insert "Keymap: \n")
35     (apply
36      #'widget-create
37      'radio-button-choice
38      :tag "radio-tag"
39      :notify (lambda (widget &rest ignore)
40                (setq keymap
41                      (widget-value widget)))
42      (mapcar (lambda (keymap) `(item ,keymap)) keymaps))
43     (widget-insert "\n")
44     (widget-create 'push-button
45                    :notify (lambda (&rest ignore)
46                              (message (concat "loadkeys " keymap))
47                              (shell-command-to-string (concat "loadkeys " keymap))
48                              (setup-timezone keymap))
49                    "Apply Form"))
50   (use-local-map widget-keymap)
51   (widget-setup)
52   (beginning-of-buffer)
53   (widget-forward 1))
54

55 (defun setup-timezone (keymap)
56   (interactive)
57   (kill-all-local-variables)
58   (let ((inhibit-read-only t))
59     (erase-buffer))
60   (remove-overlays)
61   (let ((timezone ""))
62     (setq timezones(get-nl-seperated "../installer/timezones"))
63     (widget-insert "Timezone: \n")
64     (apply

43



65      #'widget-create
66      'radio-button-choice
67      :tag "radio-tag"
68      :notify (lambda (widget &rest ignore)
69                (setq timezone
70                      (widget-value widget)))
71      (mapcar (lambda (x) `(item ,x)) timezones))
72     (widget-insert "\n")
73     (widget-create 'push-button
74                    :notify (lambda (&rest ignore)
75                              (Installation-options timezone keymap))
76                    "Apply Form"))
77   (use-local-map widget-keymap)
78   (widget-setup)
79   (beginning-of-buffer)
80   (widget-forward 1))
81

82 (defun Installation-options (timezone keymap)
83   (interactive)
84   (kill-all-local-variables)
85   (let ((inhibit-read-only t))
86     (erase-buffer))
87   (remove-overlays)
88   (let ((hostname "") (username "") (disk ""))
89     (widget-insert "\n")
90     (setq disks (get-shell "../installer/get_disks.sh"))
91     (message (car disks))
92     (widget-create 'editable-field
93                    :size 30
94                    :format "Toastname: %v "
95                    :notify (lambda (widget &rest ignore)
96                              (setq hostname (widget-value widget))))
97     (widget-insert "\n\n Disk to use:\n")
98     (apply
99      #'widget-create
100      'radio-button-choice
101      :tag "radio-tag"
102      :notify (lambda (widget &rest ignore)
103                (setq disk
104                      (widget-value widget)))
105      (mapcar (lambda (disk) `(item ,disk)) disks))
106

107     (widget-insert "\n \n")
108     (widget-create 'editable-field
109                    :size 30
110                    :format "Username: %v "
111                    :notify (lambda (widget &rest ignore)
112                              (setq username (widget-value widget))))
113     (widget-insert "\n")
114     (widget-create 'push-button
115                    :notify (lambda (&rest ignore)
116                              (upload
117                               hostname
118                               username
119                               disk
120                               timezone
121                               keymap))
122                    "Apply Form")
123     (use-local-map widget-keymap)
124     (widget-setup)
125     (beginning-of-buffer)
126     (widget-forward 1)))
127

128 (defun upload (hostname username disk timezone keymap)
129   (message "Formatting bash command...")
130   (setq cmd (format
131              "bash ../installer/install.sh --hostname %s --username %s --disk %s --timezone %s --keymap

%s &"
132              hostname
133              username
134              disk
135              timezone
136              keymap))

44



137   (message cmd)
138   (shell-command cmd))
139

140 (defun get-shell (x)
141   "Get a list of from shell script."
142   (interactive)
143   (when (eq system-type 'gnu/linux)
144     (split-string
145      (shell-command-to-string (concat "sh " x))
146      "\n" t)))
147

148 (defun get-nl-seperated (x)
149   (with-temp-buffer
150     (insert-file-contents x)
151     (let ((lines (split-string (buffer-string) "\n" t)))
152       (sort lines #'string<))))
153

154 (defun read-file-into-string (file-path)
155   "Read the content of FILE-PATH into a string."
156   (with-temp-buffer
157     (insert-file-contents file-path)
158     (buffer-string)))
159

I.I.V.I.IX. installer.el

Code: /installer/installer.el
1 (require 'widget)
2

3 (defun Kudu-installer ()
4   (interactive)
5   (switch-to-buffer "*Kudu-Installer*")
6   (setup-greeting))
7

8 (defun setup-greeting ()
9   (interactive)
10   (kill-all-local-variables)
11   (let ((inhibit-read-only t))
12     (erase-buffer))
13   (remove-overlays)
14   (widget-insert (read-file-into-string "../Logos/KuduLogo_text.txt") )
15   (widget-insert "\n\n")
16   (widget-create 'push-button
17                  :notify (lambda (&rest ignore)
18                            (setup-keymap))
19                  "Setup installation")
20   (center-line)
21   (use-local-map widget-keymap)
22   (widget-setup)
23   (beginning-of-buffer)
24   (widget-forward 1))
25

26 (defun setup-keymap ()
27   (interactive)
28   (kill-all-local-variables)
29   (let ((inhibit-read-only t))
30     (erase-buffer))
31   (remove-overlays)
32   (let ((keymap ""))
33     (setq keymaps (get-nl-seperated "../installer/keymaps"))
34     (widget-insert "Keymap: \n")
35     (apply
36      #'widget-create
37      'radio-button-choice
38      :tag "radio-tag"
39      :notify (lambda (widget &rest ignore)
40                (setq keymap
41                      (widget-value widget)))
42      (mapcar (lambda (keymap) `(item ,keymap)) keymaps))

45



43     (widget-insert "\n")
44     (widget-create 'push-button
45                    :notify (lambda (&rest ignore)
46                              (message (concat "loadkeys " keymap))
47                              (shell-command-to-string (concat "loadkeys " keymap))
48                              (setup-timezone keymap))
49                    "Apply Form"))
50   (use-local-map widget-keymap)
51   (widget-setup)
52   (beginning-of-buffer)
53   (widget-forward 1))
54

55 (defun setup-timezone (keymap)
56   (interactive)
57   (kill-all-local-variables)
58   (let ((inhibit-read-only t))
59     (erase-buffer))
60   (remove-overlays)
61   (let ((timezone ""))
62     (setq timezones(get-nl-seperated "../installer/timezones"))
63     (widget-insert "Timezone: \n")
64     (apply
65      #'widget-create
66      'radio-button-choice
67      :tag "radio-tag"
68      :notify (lambda (widget &rest ignore)
69                (setq timezone
70                      (widget-value widget)))
71      (mapcar (lambda (x) `(item ,x)) timezones))
72     (widget-insert "\n")
73     (widget-create 'push-button
74                    :notify (lambda (&rest ignore)
75                              (Installation-options timezone keymap))
76                    "Apply Form"))
77   (use-local-map widget-keymap)
78   (widget-setup)
79   (beginning-of-buffer)
80   (widget-forward 1))
81

82 (defun Installation-options (timezone keymap)
83   (interactive)
84   (kill-all-local-variables)
85   (let ((inhibit-read-only t))
86     (erase-buffer))
87   (remove-overlays)
88   (let ((hostname "") (username "") (disk ""))
89     (widget-insert "\n")
90     (setq disks (get-shell "../installer/get_disks.sh"))
91     (message (car disks))
92     (widget-create 'editable-field
93                    :size 30
94                    :format "Toastname: %v "
95                    :notify (lambda (widget &rest ignore)
96                              (setq hostname (widget-value widget))))
97     (widget-insert "\n\n Disk to use:\n")
98     (apply
99      #'widget-create
100      'radio-button-choice
101      :tag "radio-tag"
102      :notify (lambda (widget &rest ignore)
103                (setq disk
104                      (widget-value widget)))
105      (mapcar (lambda (disk) `(item ,disk)) disks))
106

107     (widget-insert "\n \n")
108     (widget-create 'editable-field
109                    :size 30
110                    :format "Username: %v "
111                    :notify (lambda (widget &rest ignore)
112                              (setq username (widget-value widget))))
113     (widget-insert "\n")
114     (widget-create 'push-button
115                    :notify (lambda (&rest ignore)
116                              (upload

46



117                               hostname
118                               username
119                               disk
120                               timezone
121                               keymap))
122                    "Apply Form")
123     (use-local-map widget-keymap)
124     (widget-setup)
125     (beginning-of-buffer)
126     (widget-forward 1)))
127

128 (defun upload (hostname username disk timezone keymap)
129   (message "Formatting bash command...")
130   (setq cmd (format
131              "bash ../installer/install.sh --hostname %s --username %s --disk %s --timezone %s --keymap

%s &"
132              hostname
133              username
134              disk
135              timezone
136              keymap))
137   (message cmd)
138   (shell-command cmd))
139

140 (defun get-shell (x)
141   "Get a list of from shell script."
142   (interactive)
143   (when (eq system-type 'gnu/linux)
144     (split-string
145      (shell-command-to-string (concat "sh " x))
146      "\n" t)))
147

148 (defun get-nl-seperated (x)
149   (with-temp-buffer
150     (insert-file-contents x)
151     (let ((lines (split-string (buffer-string) "\n" t)))
152       (sort lines #'string<))))
153

154 (defun read-file-into-string (file-path)
155   "Read the content of FILE-PATH into a string."
156   (with-temp-buffer
157     (insert-file-contents file-path)
158     (buffer-string)))
159

I.I.V.I.X. install_iso.sh

Code: /installer/install_iso.sh
1 #!/bin/bash
2

3 while [[ "$#" -gt 0 ]]; do
4   case $1 in
5     --hostname)
6       hostname="$2"
7       shift
8       ;;
9     --username)
10       username="$2"
11       shift
12       ;;
13     --disk)
14       disk="$2"
15       shift
16       ;;
17     --timezone)
18       timezone="$2"
19       shift
20       ;;
21     --keymap)

47



22       keymap="$2"
23       shift
24       ;;
25     *)
26       echo "Unknown option: $1"
27       exit 1
28       ;;
29   esac
30   shift
31 done
32

33 function get_parts() {
34   disk=$1
35   part=$(lsblk -o NAME,TYPE -n -p -l | awk -v disk="$disk" '$2=="part"' | grep $disk)
36   echo "$part"
37 }
38 function substitute_variables() {
39   local str="$1"
40   shift
41   for var; do
42   str="${str//\$$var/${!var}}"
43   done
44   echo "$str"
45 }
46 function scm_file() {
47   iso=$1
48   if [ "$iso" = true ]; then
49     echo "guix_iso.scm"
50     return
51   fi
52   echo "guix_config.scm"
53 }
54 function make_disk_iso() {
55   disk=$1
56   sfdisk -f $disk < part_iso.sfdisk
57   parted -s $disk resizepart 2 100%
58   part=$(get_parts $disk)
59   BOOT_PART=$(echo "$part" | awk 'NR==1{print $1}')
60   ROOT_PART=$(echo "$part" | awk 'NR==2{print $1}')
61

62   mkfs.fat -F32 $BOOT_PART
63   mkfs.ext4 -F $ROOT_PART
64

65   mount $ROOT_PART /mnt
66   herd start cow-store /mnt
67 }
68 function get_part_uuid() {
69   part=$1
70   blkid -s UUID -o value $part
71 }
72 function guixInit() {
73   DISK=$1
74   HOSTNAME=$2
75   USERNAME=$3
76   SCM_FILE=$4
77   TIMEZONE=$5
78   KEYMAP=$6
79

80

81   part=$(get_parts $disk)
82   root_part=$(echo "$part" | awk 'NR==2{print $1}')
83

84   ROOT_UUID=$(get_part_uuid $root_part)
85

86   scheme_template=$(cat $SCM_FILE)
87   scm=$(substitute_variables "$scheme_template" DISK HOSTNAME USERNAME ROOT_UUID TIMEZONE KEYMAP)
88

89   mkdir /mnt/etc
90   cp ../logos/Kudu_grub_image.svg /mnt/etc/Kudu_grub_image.svg
91

92   echo "$scm" > /mnt/etc/config.scm

48



93   guix pull
94   guix package -u
95   hash guix
96   guix pull
97   guix package -u
98   hash guix
99   guix system init /mnt/etc/config.scm /mnt
100

101 }
102 function setup_system() {
103   USERNAME=$1
104

105   mkdir -p /mnt/home/$USERNAME/
106   git clone https://github.com/JanJoar/Kudu-Emacs.git /mnt/home/$USERNAME/.emacs.d -b devel
107 }
108 function setup_iso() {
109   mkdir -p /mnt/root
110   cp ./* /mnt/root
111   git clone https://github.com/JanJoar/Kudu-Emacs.git /mnt/root/Kudu-Emacs -b devel
112   dir="/root/Kudu-Emacs/installer"
113   echo "emacs -nw -q -l $dir/installer.el --eval \"(Kudu-installer)\" --chdir $dir" > /mnt/root/.bashrc
114 }
115

116 make_disk_iso $disk
117 guixInit      \
118   $disk     \
119   $hostname   \
120   $username   \
121   "guix_iso.scm"    \
122   $timezone   \
123   $keymap
124 setup_iso

I.I.V.I.XI. install_quick.sh

Code: /installer/install_quick.sh
1 #!/bin/sh
2

3 echo choose option
4 # bash ./install_test.sh --hostname kud --username tobi --disk /dev/sda --timezone Europe/Stockholm --

keymap sv
5 # bash ./install.sh --hostname kud --username tobi --disk /dev/sda --timezone Europe/Stockholm --keymap sv
6 #
7 # bash ./install_test.sh --hostname kud --username tobi --disk /dev/sda --timezone Europe/Stockholm --

keymap sv
8 # bash ./install_iso.sh --hostname kud --username tobi --disk /dev/sda --timezone Europe/Stockholm --keymap

sv
9

I.I.V.I.XII. install.sh

Code: /installer/install.sh
1 #!/bin/bash
2

3 while [[ "$#" -gt 0 ]]; do
4   case $1 in
5     --hostname)
6       hostname="$2"
7       shift
8       ;;
9     --username)
10       username="$2"
11       shift
12       ;;
13     --disk)
14       disk="$2"
15       shift

49



16       ;;
17     --timezone)
18       timezone="$2"
19       shift
20       ;;
21     --keymap)
22       keymap="$2"
23       shift
24       ;;
25     *)
26       echo "Unknown option: $1"
27       exit 1
28       ;;
29   esac
30   shift
31 done
32

33 function get_parts() {
34   disk=$1
35   part=$(lsblk -o NAME,TYPE -n -p -l | awk -v disk="$disk" '$2=="part"' | grep $disk)
36   echo "$part"
37 }
38 function substitute_variables() {
39   local str="$1"
40   shift
41   for var; do
42   str="${str//\$$var/${!var}}"
43   done
44   echo "$str"
45 }
46 function scm_file() {
47   iso=$1
48   if [ "$iso" = true ]; then
49     echo "guix_iso.scm"
50     return
51   fi
52   echo "guix_config.scm"
53 }
54

55 function make_disk() {
56   disk=$1
57   sfdisk -f $disk < part.sfdisk
58   parted -s $disk resizepart 3 100%
59   part=$(get_parts $disk)
60   BOOT_PART=$(echo "$part" | awk 'NR==1{print $1}')
61   SWAP_PART=$(echo "$part" | awk 'NR==2{print $1}')
62   ROOT_PART=$(echo "$part" | awk 'NR==3{print $1}')
63

64   mkfs.fat -F32 $BOOT_PART
65   mkfs.ext4 -F $ROOT_PART
66   mkswap $SWAP_PART
67

68   swapon $SWAP_PART
69   mount $ROOT_PART /mnt
70   herd start cow-store /mnt
71 }
72 function get_part_uuid() {
73   part=$1
74   blkid -s UUID -o value $part
75 }
76 function guixInit() {
77   DISK=$1
78   HOSTNAME=$2
79   USERNAME=$3
80   SCM_FILE=$4
81   TIMEZONE=$5
82   KEYMAP=$6
83

84

85   part=$(get_parts $disk)
86   swap_part=$(echo "$part" | awk 'NR==2{print $1}')
87   root_part=$(echo "$part" | awk 'NR==3{print $1}')

50



88

89   SWAP_UUID=$(get_part_uuid $swap_part)
90   ROOT_UUID=$(get_part_uuid $root_part)
91

92   scheme_template=$(cat $SCM_FILE)
93   scm=$(substitute_variables "$scheme_template" DISK HOSTNAME USERNAME SWAP_UUID ROOT_UUID TIMEZONE KEYMAP)
94

95   mkdir /mnt/etc
96   cp ../Logos/Kudu_grub_image.svg /mnt/etc/Kudu_grub_image.svg
97

98   echo "$scm" > /mnt/etc/config.scm
99   guix pull
100   guix package -u
101   hash guix
102   guix pull
103   guix package -u
104   hash guix
105   guix system init /mnt/etc/config.scm /mnt
106

107 }
108 function setup_system() {
109   USERNAME=$1
110

111   mkdir -p /mnt/home/$USERNAME/
112   git clone https://github.com/JanJoar/Kudu-Emacs.git /mnt/home/$USERNAME/.emacs.d -b devel
113 }
114 make_disk $disk
115 guixInit      \
116   $disk     \
117   $hostname   \
118   $username   \
119   $(scm_file $iso)  \
120   $timezone   \
121   $keymap
122 setup_system $username
123

I.I.V.I.XIII. install_test.sh

Code: /installer/install_test.sh
1 #!/bin/bash
2

3 while [[ "$#" -gt 0 ]]; do
4   case $1 in
5     --hostname)
6       hostname="$2"
7       shift
8       ;;
9     --username)
10       username="$2"
11       shift
12       ;;
13     --disk)
14       disk="$2"
15       shift
16       ;;
17     --create-iso)
18       iso=true
19       shift
20       ;;
21     --timezone)
22       timezone="$2"
23       shift
24       ;;
25     --keymap)
26       keymap="$2"
27       shift
28       ;;
29     *)

51



30       echo "Unknown option: $1"
31       exit 1
32       ;;
33   esac
34   shift
35 done
36

37 function substitute_variables() {
38   local str="$1"
39   shift
40   for var; do
41   str="${str//\$$var/${!var}}"
42   done
43   echo "$str"
44 }
45 function scm_file() {
46   iso=$1
47   if [ "$iso" = true ]; then
48     echo "guix_iso.scm"
49     return
50   fi
51   echo "guix_config.scm"
52 }
53

54 DISK=$disk
55 USERNAME=$username
56 HOSTNAME=$hostname
57 SCM_FILE=$(scm_file $iso)
58 TIMEZONE=$timezone
59 KEYMAP=$keymap
60 SWAP_UUID="swaps uuid"
61 ROOT_UUID="roots uuid"
62 scheme_template=$(cat $SCM_FILE)
63 scm=$(substitute_variables "$scheme_template" DISK HOSTNAME USERNAME SWAP_UUID ROOT_UUID TIMEZONE KEYMAP)
64 echo "$scm"
65 echo "Hostname: $hostname"
66 echo "Username: $username"
67 echo "Partition: $disk"
68

I.I.V.I.XIV. keymaps

Code: /installer/keymaps
1 af
2 al
3 altwin
4 am
5 apl
6 ara
7 at
8 au
9 az
10 ba
11 bd
12 be
13 bg
14 bqn
15 br
16 brai
17 bt
18 bw
19 by
20 ca
21 capslock
22 cd
23 ch
24 cm
25 cn
26 compose
27 ctrl
28 cz

52



29 de
30 digital_vndr
31 dk
32 dz
33 ee
34 eg
35 empty
36 epo
37 es
38 et
39 eu
40 eurosign
41 fi
42 fo
43 fr
44 fujitsu_vndr
45 gb
46 ge
47 gh
48 gn
49 gr
50 group
51 hp_vndr
52 hr
53 hu
54 id
55 ie
56 il
57 in
58 inet
59 iq
60 ir
61 is
62 it
63 jolla_vndr
64 jp
65 ke
66 keypad
67 kg
68 kh
69 kpdl
70 kr
71 kz
72 la
73 latam
74 latin
75 level2
76 level3
77 level5
78 lk
79 lt
80 lv
81 ma
82 macintosh_vndr
83 mao
84 md
85 me
86 mk
87 ml
88 mm
89 mn
90 mt
91 mv
92 my
93 nbsp
94 nec_vndr
95 ng
96 nl
97 no
98 nokia_vndr
99 np
100 olpc
101 parens
102 pc

53



103 ph
104 pk
105 pl
106 pt
107 ro
108 rs
109 ru
110 rupeesign
111 se
112 sgi_vndr
113 sharp_vndr
114 shift
115 si
116 sk
117 sn
118 sony_vndr
119 srvr_ctrl
120 sun_vndr
121 sy
122 terminate
123 tg
124 th
125 tj
126 tm
127 tr
128 trans
129 tw
130 typo
131 tz
132 ua
133 us
134 uz
135 vn
136 xfree68_vndr
137 za
138

I.I.V.I.XV. logo.ascii_art

Code: /installer/logo.ascii_art
1                   .==               ::.
2                 .#@+            :-+%@@@%*-.
3                -@@-           +*.    :+#@@@@##**+-
4               -@%.          -#:          .:--:.
5              =@*          .*=               *    .#%%+
6             =@=          +*.               +=     :%@@:
7            +@:         =+. .-*=         . :%       -@@.
8           *%.  :++=---=. .  *#     .----. %.       +@-   .:
9          *%   -++++-       +*   .:::     +=       =%: ..:@*       .--.
10         ##  :+****+=:     +@=:--.       -%       ==     *+    .:--:
11        ##         +@@.   .**=.         :@.     ::      ##  :-:
12      .%*          *@:                 .@-  :::.       #@@+-.
13     .%*          -@:                  %@+=-
14    .%*          :%.                  :-.
15   .%*          -@.              .:-+#@@@#=      .
16  .%*          =@:          .....     :+%@@@%*+=:
17 .%+          =@@.   .:::::.
18 ::           %@@%*+=:.
19

I.I.V.I.XVI. part_iso.sfdisk

Code: /installer/part_iso.sfdisk
1

2 label: gpt
3 label-id: 03273926-5F0F-468D-A19F-C2E0DC71B283
4

54



5 start=        2048, size= 4096, type=21686148-6449-6E6F-744E-656564454649,  uuid=A45601B8-CF20-4EAF-
A097-07D9F62B413C,  bootable

6 start=        6144, size= 1G, type=0FC63DAF-8483-4772-8E79-3D69D8477DE4,  uuid=A8D6CE0E-31AC-4C73-855C-
EF7F1329930A

7

I.I.V.I.XVII. part.sfdisk

Code: /installer/part.sfdisk
1 label: gpt
2 label-id: 03273926-5F0F-468D-A19F-C2E0DC71B283
3

4 start=        2048, size= 4096, type=21686148-6449-6E6F-744E-656564454649,  uuid=A45601B8-CF20-4EAF-
A097-07D9F62B413C,  bootable

5 start=        6144, size= 2097152,  type=0657FD6D-A4AB-43C4-84E5-0933C84B4F4F,
uuid=4C0F761A-9246-457E-8340-8506C16701C9

6 start=     2103296, size= 1G, type=0FC63DAF-8483-4772-8E79-3D69D8477DE4,  uuid=A8D6CE0E-31AC-4C73-855C-
EF7F1329930A

7

I.I.V.I.XVIII. template.scm

Code: /installer/template.scm
1

2 (use-modules (gnu))
3 (use-service-modules networking ssh)
4 (use-package-modules screen ssh)
5

6 (operating-system
7   (host-name "{{hostname}}")
8   (timezone "{{timezone}}")
9   (locale "{{locale}}")
10

11   ;; Boot in "legacy" BIOS mode, assuming /dev/sdX is the
12   ;; target hard disk, and "my-root" is the label of the target
13   ;; root file system.
14   (bootloader (bootloader-configuration
15                 (bootloader grub-bootloader)
16                 (targets '("{{disk_bootloader}}"))))
17   ;; It's fitting to support the equally bare bones ‘-nographic’
18   ;; QEMU option, which also nicely sidesteps forcing QWERTY.
19   (kernel-arguments (list "console=ttyS0,115200"))
20   (file-systems (cons (file-system
21                         (device (file-system-label "kudu-root"))
22                         (mount-point "/")
23                         (type "ext4"))
24                       %base-file-systems))
25

26   ;; This is where user accounts are specified.  The "root"
27   ;; account is implicit, and is initially created with the
28   ;; empty password.
29   (users
30     (list
31       {% for user in users %}
32         (user-account
33           (name "{user.name}")
34           (comment "{user.comment}")
35           (group "{user.group}")
36           (supplementary-groups '("wheel" "audio" "video"))
37         )
38       {% endfor %}
39     %base-user-accounts
40   ))
41

42   ;; Globally-installed packages.
43   (packages (list

55



44         screen
45         emacs
46         emacs-exwm
47         wmctl
48         brightnessctl
49         git
50         icecat
51         openttd
52         %base-packages
53   ))
54

55   ;; Add services to the baseline: a DHCP client and
56   ;; an SSH server.
57   (services (append (list (service dhcp-client-service-type)
58                           (service openssh-service-type
59                                    (openssh-configuration
60                                     (openssh openssh-sans-x)
61                                     (port-number 2222))))
62                     %base-services)))
63

I.I.V.I.XIX. timezones

Code: /installer/timezones
1 Africa/Abidjan
2 Africa/Accra
3 Africa/Addis_Ababa
4 Africa/Algiers
5 Africa/Asmara
6 Africa/Asmera
7 Africa/Bamako
8 Africa/Bangui
9 Africa/Banjul
10 Africa/Bissau
11 Africa/Blantyre
12 Africa/Brazzaville
13 Africa/Bujumbura
14 Africa/Cairo
15 Africa/Casablanca
16 Africa/Ceuta
17 Africa/Conakry
18 Africa/Dakar
19 Africa/Dar_es_Salaam
20 Africa/Djibouti
21 Africa/Douala
22 Africa/El_Aaiun
23 Africa/Freetown
24 Africa/Gaborone
25 Africa/Harare
26 Africa/Johannesburg
27 Africa/Juba
28 Africa/Kampala
29 Africa/Khartoum
30 Africa/Kigali
31 Africa/Kinshasa
32 Africa/Lagos
33 Africa/Libreville
34 Africa/Lome
35 Africa/Luanda
36 Africa/Lubumbashi
37 Africa/Lusaka
38 Africa/Malabo
39 Africa/Maputo
40 Africa/Maseru
41 Africa/Mbabane
42 Africa/Mogadishu
43 Africa/Monrovia
44 Africa/Nairobi
45 Africa/Ndjamena
46 Africa/Niamey
47 Africa/Nouakchott

56



48 Africa/Ouagadougou
49 Africa/Porto-Novo
50 Africa/Sao_Tome
51 Africa/Timbuktu
52 Africa/Tripoli
53 Africa/Tunis
54 Africa/Windhoek
55 America/Adak
56 America/Anchorage
57 America/Anguilla
58 America/Antigua
59 America/Araguaina
60 America/Argentina/Buenos_Aires
61 America/Argentina/Catamarca
62 America/Argentina/ComodRivadavia
63 America/Argentina/Cordoba
64 America/Argentina/Jujuy
65 America/Argentina/La_Rioja
66 America/Argentina/Mendoza
67 America/Argentina/Rio_Gallegos
68 America/Argentina/Salta
69 America/Argentina/San_Juan
70 America/Argentina/San_Luis
71 America/Argentina/Tucuman
72 America/Argentina/Ushuaia
73 America/Aruba
74 America/Asuncion
75 America/Atikokan
76 America/Atka
77 America/Bahia
78 America/Bahia_Banderas
79 America/Barbados
80 America/Belem
81 America/Belize
82 America/Blanc-Sablon
83 America/Boa_Vista
84 America/Bogota
85 America/Boise
86 America/Buenos_Aires
87 America/Cambridge_Bay
88 America/Campo_Grande
89 America/Cancun
90 America/Caracas
91 America/Catamarca
92 America/Cayenne
93 America/Cayman
94 America/Chicago
95 America/Chihuahua
96 America/Ciudad_Juarez
97 America/Coral_Harbour
98 America/Cordoba
99 America/Costa_Rica
100 America/Creston
101 America/Cuiaba
102 America/Curacao
103 America/Danmarkshavn
104 America/Dawson
105 America/Dawson_Creek
106 America/Denver
107 America/Detroit
108 America/Dominica
109 America/Edmonton
110 America/Eirunepe
111 America/El_Salvador
112 America/Ensenada
113 America/Fort_Nelson
114 America/Fort_Wayne
115 America/Fortaleza
116 America/Glace_Bay
117 America/Godthab
118 America/Goose_Bay
119 America/Grand_Turk
120 America/Grenada
121 America/Guadeloupe

57



122 America/Guatemala
123 America/Guayaquil
124 America/Guyana
125 America/Halifax
126 America/Havana
127 America/Hermosillo
128 America/Indiana/Indianapolis
129 America/Indiana/Knox
130 America/Indiana/Marengo
131 America/Indiana/Petersburg
132 America/Indiana/Tell_City
133 America/Indiana/Vevay
134 America/Indiana/Vincennes
135 America/Indiana/Winamac
136 America/Indianapolis
137 America/Inuvik
138 America/Iqaluit
139 America/Jamaica
140 America/Jujuy
141 America/Juneau
142 America/Kentucky/Louisville
143 America/Kentucky/Monticello
144 America/Knox_IN
145 America/Kralendijk
146 America/La_Paz
147 America/Lima
148 America/Los_Angeles
149 America/Louisville
150 America/Lower_Princes
151 America/Maceio
152 America/Managua
153 America/Manaus
154 America/Marigot
155 America/Martinique
156 America/Matamoros
157 America/Mazatlan
158 America/Mendoza
159 America/Menominee
160 America/Merida
161 America/Metlakatla
162 America/Mexico_City
163 America/Miquelon
164 America/Moncton
165 America/Monterrey
166 America/Montevideo
167 America/Montreal
168 America/Montserrat
169 America/Nassau
170 America/New_York
171 America/Nipigon
172 America/Nome
173 America/Noronha
174 America/North_Dakota/Beulah
175 America/North_Dakota/Center
176 America/North_Dakota/New_Salem
177 America/Nuuk
178 America/Ojinaga
179 America/Panama
180 America/Pangnirtung
181 America/Paramaribo
182 America/Phoenix
183 America/Port-au-Prince
184 America/Port_of_Spain
185 America/Porto_Acre
186 America/Porto_Velho
187 America/Puerto_Rico
188 America/Punta_Arenas
189 America/Rainy_River
190 America/Rankin_Inlet
191 America/Recife
192 America/Regina
193 America/Resolute
194 America/Rio_Branco
195 America/Rosario

58



196 America/Santa_Isabel
197 America/Santarem
198 America/Santiago
199 America/Santo_Domingo
200 America/Sao_Paulo
201 America/Scoresbysund
202 America/Shiprock
203 America/Sitka
204 America/St_Barthelemy
205 America/St_Johns
206 America/St_Kitts
207 America/St_Lucia
208 America/St_Thomas
209 America/St_Vincent
210 America/Swift_Current
211 America/Tegucigalpa
212 America/Thule
213 America/Thunder_Bay
214 America/Tijuana
215 America/Toronto
216 America/Tortola
217 America/Vancouver
218 America/Virgin
219 America/Whitehorse
220 America/Winnipeg
221 America/Yakutat
222 America/Yellowknife
223 Antarctica/Casey
224 Antarctica/Davis
225 Antarctica/DumontDUrville
226 Antarctica/Macquarie
227 Antarctica/Mawson
228 Antarctica/McMurdo
229 Antarctica/Palmer
230 Antarctica/Rothera
231 Antarctica/South_Pole
232 Antarctica/Syowa
233 Antarctica/Troll
234 Antarctica/Vostok
235 Arctic/Longyearbyen
236 Asia/Aden
237 Asia/Almaty
238 Asia/Amman
239 Asia/Anadyr
240 Asia/Aqtau
241 Asia/Aqtobe
242 Asia/Ashgabat
243 Asia/Ashkhabad
244 Asia/Atyrau
245 Asia/Baghdad
246 Asia/Bahrain
247 Asia/Baku
248 Asia/Bangkok
249 Asia/Barnaul
250 Asia/Beirut
251 Asia/Bishkek
252 Asia/Brunei
253 Asia/Calcutta
254 Asia/Chita
255 Asia/Choibalsan
256 Asia/Chongqing
257 Asia/Chungking
258 Asia/Colombo
259 Asia/Dacca
260 Asia/Damascus
261 Asia/Dhaka
262 Asia/Dili
263 Asia/Dubai
264 Asia/Dushanbe
265 Asia/Famagusta
266 Asia/Gaza
267 Asia/Harbin
268 Asia/Hebron
269 Asia/Ho_Chi_Minh

59



270 Asia/Hong_Kong
271 Asia/Hovd
272 Asia/Irkutsk
273 Asia/Istanbul
274 Asia/Jakarta
275 Asia/Jayapura
276 Asia/Jerusalem
277 Asia/Kabul
278 Asia/Kamchatka
279 Asia/Karachi
280 Asia/Kashgar
281 Asia/Kathmandu
282 Asia/Katmandu
283 Asia/Khandyga
284 Asia/Kolkata
285 Asia/Krasnoyarsk
286 Asia/Kuala_Lumpur
287 Asia/Kuching
288 Asia/Kuwait
289 Asia/Macao
290 Asia/Macau
291 Asia/Magadan
292 Asia/Makassar
293 Asia/Manila
294 Asia/Muscat
295 Asia/Nicosia
296 Asia/Novokuznetsk
297 Asia/Novosibirsk
298 Asia/Omsk
299 Asia/Oral
300 Asia/Phnom_Penh
301 Asia/Pontianak
302 Asia/Pyongyang
303 Asia/Qatar
304 Asia/Qostanay
305 Asia/Qyzylorda
306 Asia/Rangoon
307 Asia/Riyadh
308 Asia/Saigon
309 Asia/Sakhalin
310 Asia/Samarkand
311 Asia/Seoul
312 Asia/Shanghai
313 Asia/Singapore
314 Asia/Srednekolymsk
315 Asia/Taipei
316 Asia/Tashkent
317 Asia/Tbilisi
318 Asia/Tehran
319 Asia/Tel_Aviv
320 Asia/Thimbu
321 Asia/Thimphu
322 Asia/Tokyo
323 Asia/Tomsk
324 Asia/Ujung_Pandang
325 Asia/Ulaanbaatar
326 Asia/Ulan_Bator
327 Asia/Urumqi
328 Asia/Ust-Nera
329 Asia/Vientiane
330 Asia/Vladivostok
331 Asia/Yakutsk
332 Asia/Yangon
333 Asia/Yekaterinburg
334 Asia/Yerevan
335 Atlantic/Azores
336 Atlantic/Bermuda
337 Atlantic/Canary
338 Atlantic/Cape_Verde
339 Atlantic/Faeroe
340 Atlantic/Faroe
341 Atlantic/Jan_Mayen
342 Atlantic/Madeira
343 Atlantic/Reykjavik

60



344 Atlantic/South_Georgia
345 Atlantic/St_Helena
346 Atlantic/Stanley
347 Australia/ACT
348 Australia/Adelaide
349 Australia/Brisbane
350 Australia/Broken_Hill
351 Australia/Canberra
352 Australia/Currie
353 Australia/Darwin
354 Australia/Eucla
355 Australia/Hobart
356 Australia/LHI
357 Australia/Lindeman
358 Australia/Lord_Howe
359 Australia/Melbourne
360 Australia/NSW
361 Australia/North
362 Australia/Perth
363 Australia/Queensland
364 Australia/South
365 Australia/Sydney
366 Australia/Tasmania
367 Australia/Victoria
368 Australia/West
369 Australia/Yancowinna
370 Brazil/Acre
371 Brazil/DeNoronha
372 Brazil/East
373 Brazil/West
374 CET
375 CST6CDT
376 Canada/Atlantic
377 Canada/Central
378 Canada/Eastern
379 Canada/Mountain
380 Canada/Newfoundland
381 Canada/Pacific
382 Canada/Saskatchewan
383 Canada/Yukon
384 Chile/Continental
385 Chile/EasterIsland
386 Cuba
387 EET
388 EST
389 EST5EDT
390 Egypt
391 Eire
392 Etc/GMT
393 Etc/GMT+0
394 Etc/GMT+1
395 Etc/GMT+10
396 Etc/GMT+11
397 Etc/GMT+12
398 Etc/GMT+2
399 Etc/GMT+3
400 Etc/GMT+4
401 Etc/GMT+5
402 Etc/GMT+6
403 Etc/GMT+7
404 Etc/GMT+8
405 Etc/GMT+9
406 Etc/GMT-0
407 Etc/GMT-1
408 Etc/GMT-10
409 Etc/GMT-11
410 Etc/GMT-12
411 Etc/GMT-13
412 Etc/GMT-14
413 Etc/GMT-2
414 Etc/GMT-3
415 Etc/GMT-4
416 Etc/GMT-5
417 Etc/GMT-6

61



418 Etc/GMT-7
419 Etc/GMT-8
420 Etc/GMT-9
421 Etc/GMT0
422 Etc/Greenwich
423 Etc/UCT
424 Etc/UTC
425 Etc/Universal
426 Etc/Zulu
427 Europe/Amsterdam
428 Europe/Andorra
429 Europe/Astrakhan
430 Europe/Athens
431 Europe/Belfast
432 Europe/Belgrade
433 Europe/Berlin
434 Europe/Bratislava
435 Europe/Brussels
436 Europe/Bucharest
437 Europe/Budapest
438 Europe/Busingen
439 Europe/Chisinau
440 Europe/Copenhagen
441 Europe/Dublin
442 Europe/Gibraltar
443 Europe/Guernsey
444 Europe/Helsinki
445 Europe/Isle_of_Man
446 Europe/Istanbul
447 Europe/Jersey
448 Europe/Kaliningrad
449 Europe/Kiev
450 Europe/Kirov
451 Europe/Kyiv
452 Europe/Lisbon
453 Europe/Ljubljana
454 Europe/London
455 Europe/Luxembourg
456 Europe/Madrid
457 Europe/Malta
458 Europe/Mariehamn
459 Europe/Minsk
460 Europe/Monaco
461 Europe/Moscow
462 Europe/Nicosia
463 Europe/Oslo
464 Europe/Paris
465 Europe/Podgorica
466 Europe/Prague
467 Europe/Riga
468 Europe/Rome
469 Europe/Samara
470 Europe/San_Marino
471 Europe/Sarajevo
472 Europe/Saratov
473 Europe/Simferopol
474 Europe/Skopje
475 Europe/Sofia
476 Europe/Stockholm
477 Europe/Tallinn
478 Europe/Tirane
479 Europe/Tiraspol
480 Europe/Ulyanovsk
481 Europe/Uzhgorod
482 Europe/Vaduz
483 Europe/Vatican
484 Europe/Vienna
485 Europe/Vilnius
486 Europe/Volgograd
487 Europe/Warsaw
488 Europe/Zagreb
489 Europe/Zaporozhye
490 Europe/Zurich
491 Factory

62



492 GB
493 GB-Eire
494 GMT
495 GMT+0
496 GMT-0
497 GMT0
498 Greenwich
499 HST
500 Hongkong
501 Iceland
502 Indian/Antananarivo
503 Indian/Chagos
504 Indian/Christmas
505 Indian/Cocos
506 Indian/Comoro
507 Indian/Kerguelen
508 Indian/Mahe
509 Indian/Maldives
510 Indian/Mauritius
511 Indian/Mayotte
512 Indian/Reunion
513 Iran
514 Israel
515 Jamaica
516 Japan
517 Kwajalein
518 Libya
519 MET
520 MST
521 MST7MDT
522 Mexico/BajaNorte
523 Mexico/BajaSur
524 Mexico/General
525 NZ
526 NZ-CHAT
527 Navajo
528 PRC
529 PST8PDT
530 Pacific/Apia
531 Pacific/Auckland
532 Pacific/Bougainville
533 Pacific/Chatham
534 Pacific/Chuuk
535 Pacific/Easter
536 Pacific/Efate
537 Pacific/Enderbury
538 Pacific/Fakaofo
539 Pacific/Fiji
540 Pacific/Funafuti
541 Pacific/Galapagos
542 Pacific/Gambier
543 Pacific/Guadalcanal
544 Pacific/Guam
545 Pacific/Honolulu
546 Pacific/Johnston
547 Pacific/Kanton
548 Pacific/Kiritimati
549 Pacific/Kosrae
550 Pacific/Kwajalein
551 Pacific/Majuro
552 Pacific/Marquesas
553 Pacific/Midway
554 Pacific/Nauru
555 Pacific/Niue
556 Pacific/Norfolk
557 Pacific/Noumea
558 Pacific/Pago_Pago
559 Pacific/Palau
560 Pacific/Pitcairn
561 Pacific/Pohnpei
562 Pacific/Ponape
563 Pacific/Port_Moresby
564 Pacific/Rarotonga
565 Pacific/Saipan

63



566 Pacific/Samoa
567 Pacific/Tahiti
568 Pacific/Tarawa
569 Pacific/Tongatapu
570 Pacific/Truk
571 Pacific/Wake
572 Pacific/Wallis
573 Pacific/Yap
574 Poland
575 Portugal
576 ROC
577 ROK
578 Singapore
579 Turkey
580 UCT
581 US/Alaska
582 US/Aleutian
583 US/Arizona
584 US/Central
585 US/East-Indiana
586 US/Eastern
587 US/Hawaii
588 US/Indiana-Starke
589 US/Michigan
590 US/Mountain
591 US/Pacific
592 US/Samoa
593 UTC
594 Universal
595 W-SU
596 WET
597 Zulu

I.I.V.I.XX. test_get_parts.sh

Code: /installer/test_get_parts.sh
1 #!/bin/bash
2

3

4 function test_part() {
5

6   disk=$1
7   part=$(lsblk -o NAME,TYPE -n -p -l | awk -v disk="$disk" '$2=="part" && index($1, disk)==1 {print $1}')
8   echo "$part"
9 }
10

I.I.V.II. quick-init.el

Code: /quick-init.el
1   (setq corfu-auto t
2         visible-bell t
3         vertico-mode t
4         vertico-count 10
5         show-paren-mode t
6         show-paren-delay 0
7         xterm-mouse-mode t
8         load-prefer-newer t
9         global-corfu-mode t
10         pixel-scroll-mode t
11         electric-pair-mode t
12         corfu-prescient-mode t
13         prescient-persist-mode t
14         vertico-prescient-mode t
15         prescient-history-length 5
16         global-hide-mode-line-mode t
17         pixel-scroll-precision-mode t
18         prescient-sort-full-matches-first t

64



19         native-comp-async-report-warnings-errors nil)
20

21   (defalias 'yes-or-no-p 'y-or-n-p)
22   (add-hook 'prog-mode-hook #'rainbow-delimiters-mode)
23   (unless (display-graphic-p)
24         (corfu-terminal-mode +1))
25

26   (add-to-list 'completion-at-point-functions #'cape-dabbrev)
27   (add-to-list 'completion-at-point-functions #'cape-file)
28   (add-to-list 'completion-at-point-functions #'cape-elisp-block)
29   (add-to-list 'completion-at-point-functions #'cape-history)
30   (add-to-list 'completion-at-point-functions #'cape-keyword)
31

32   (vertico-indexed-mode)
33   (vertico-mouse-mode)
34   (add-hook 'vertico-mode-hook #'marginalia-mode)
35   (completion-styles '(orderless basic prescient))
36      (completion-category-overrides '((file (styles basic partial-completion))))
37

38   (defun sudo ()
39     "Opens the current buffer at point with root privelages using TRAMP"
40     (interactive)
41     (let ((position (point)))
42       (find-alternate-file (concat "/sudo::"
43                                    (buffer-file-name (current-buffer))))
44       (goto-char position)))
45

46   (defun ! (n)
47     "An emacs function to calculate the factorial of n using the calc library"
48     (string-to-number (calc-eval (format "%s!" n))))
49

50   (defun nPr (n k)
51     "A function for calculating the number of permutations in combinatorics"
52     (/
53      (! n)
54      (! (- n k))))
55

56   (defun nCr (n k)
57     "A function for calculating the number of combinations in combinatorics"
58     (/
59      (! n)
60      (* (! k) (! (- n k)))))
61

62   (defalias 'binomial 'nCr)
63

I.I.V.III. snippets

I.I.V.III.I. org-mode

I.I.V.III.I.I. cases

Code: /snippets/org-mode/cases
1 # -*- mode: snippet -*-
2 # name: LaTeX case
3 # key: cases
4 # --
5 \begin{cases}
6 ${1:}
7 \end{cases}

I.I.V.III.I.II. cases

Code: /snippets/org-mode/cases~
1 # -*- mode: snippet -*-
2 # name: LaTeX case

65



3 # key: cases
4 # --
5 \begin{cases}
6 {${1:}}
7 \end{cases}

I.I.V.III.I.III. display_math

Code: /snippets/org-mode/display_math
1 # -*- mode: snippet -*-
2 # name: Display math environment
3 # key: math
4 # --
5 \[
6 ${0:}
7 \]

I.I.V.III.I.IV. fraction

Code: /snippets/org-mode/fraction
1 # -*- mode: snippet -*-
2 # name: fraction
3 # key: fr
4 # --
5 \frac{${1:}}{${2:}}

I.I.V.III.I.V. fraction_dollar

Code: /snippets/org-mode/fraction_dollar
1 # -*- mode: snippet -*-
2 # name: fraction
3 # key: $fr
4 # --
5 $\frac{${1:}}{${2:}}
6

I.I.V.III.I.VI. fraction_dollar_2

Code: /snippets/org-mode/fraction_dollar_2
1 # -*- mode: snippet -*-
2 # name: fraction
3 # key: $fr$
4 # --
5 $\frac{${1:}}{${2:}}$

I.I.V.III.I.VII. f(x)

Code: /snippets/org-mode/f(x)
1 # -*- mode: snippet -*-
2 # name: f(x)
3 # contributor: JanJoar
4 # key: f
5 # --
6 f(x)

I.I.V.III.I.VIII. g(x)

Code: /snippets/org-mode/g(x)
1 # -*- mode: snippet -*-
2 # name: g(x)

66



3 # contributor: JanJoar
4 # key: g
5 # --
6 g(x)

I.I.V.III.I.IX. infinity

Code: /snippets/org-mode/infinity
1 # -*- mode: snippet -*-
2 # name: Infinty
3 # key: inf
4 # --
5 \infty

I.I.V.III.I.X. integral

Code: /snippets/org-mode/integral
1 # -*- mode: snippet -*-
2 # name: Integral
3 # key: int
4 # --
5 \[ \int_{${1:}}^{${2:}} ${3:} \,\mathrm{d}x \]

I.I.V.III.I.XI. integral_dollar

Code: /snippets/org-mode/integral_dollar
1 # -*- mode: snippet -*-
2 # name: Integral_dollar
3 # key: $int
4 # --
5 $\int_{${1:}}^{${2:}}\,\mathrm{d}x
6

I.I.V.III.I.XII. integral_dollar_2

Code: /snippets/org-mode/integral_dollar_2
1 # -*- mode: snippet -*-
2 # name: Integral_double_dollar
3 # key: $int$
4 # --
5 $\int_{${1:}}^{${2:}}\,\mathrm{d}x$

I.I.V.III.I.XIII. L

Code: /snippets/org-mode/L
1 # -*- mode: snippet -*-
2 # name: Calc L
3 # contributor: jdhao <jdhao@hotmail.com>
4 # key: L
5 # --
6 \mathcal{L}

I.I.V.III.I.XIV. lhd

Code: /snippets/org-mode/
1 # -*- mode: snippet -*-
2 # name: lhd
3 # key: lhd
4 # --
5 \lhd

67



I.I.V.III.I.XV. limit

Code: /snippets/org-mode/limit
1 # -*- mode: snippet -*-
2 # name: limit
3 # key: lim
4 # --
5 \lim_{{${1:}\to\ ${2:}}}
6

I.I.V.III.I.XVI. limit_dollar

Code: /snippets/org-mode/limit_dollar
1 # -*- mode: snippet -*-
2 # name: limit
3 # key: $lim
4 # --
5 $\lim_{{${1:}\to\ ${2:}}}
6

I.I.V.III.I.XVII. limit_dollar_2

Code: /snippets/org-mode/limit_dollar_2
1 # -*- mode: snippet -*-
2 # name: limit_dollar_double
3 # key: $lim$
4 # --
5 $\lim_{{${1:}\to\ ${2:}}}$

I.I.V.III.I.XVIII. mathbb

Code: /snippets/org-mode/mathbb
1 # -*- mode: snippet -*-
2 # name: set
3 # key: set
4 # --
5 \mathbb{${1:}}

I.I.V.III.I.XIX. rhd

Code: /snippets/org-mode/rhd
1 # -*- mode: snippet -*-
2 # name: rhd
3 # key: rhd
4 # --
5 \rhd

I.I.V.III.I.XX. sim

Code: /snippets/org-mode/sim
1 # -*- mode: snippet -*-
2 # name: sim
3 # key: ~
4 # --
5 \sim

I.I.V.III.I.XXI. sube

Code: /snippets/org-mode/sube

68



1 # -*- mode: snippet -*-
2 # name: sube
3 # key: sube
4 # --
5 \subseteq

I.I.V.III.I.XXII. subset

Code: /snippets/org-mode/subset
1 # -*- mode: snippet -*-
2 # name: sub
3 # key: sub
4 # --
5 \subset

I.I.V.III.I.XXIII. sum

Code: /snippets/org-mode/sum
1 # -*- mode: snippet -*-
2 # name: sum
3 # key: su
4 # --
5 \sum_{${1:}}^{${2:}}

I.I.V.III.I.XXIV. sum_dollar

Code: /snippets/org-mode/sum_dollar
1 # -*- mode: snippet -*-
2 # name: sum_dollar
3 # key: $su
4 # --
5 $\sum_{${1:}}^{${2:}}

I.I.V.III.I.XXV. org-mode

Code: /snippets/org-mode/sum_dollar_2
1 # -*- mode: snippet -*-
2 # name: sum_dollar_double
3 # key: $su$
4 # --
5 $\sum_{${1:}}^{${2:}}$

I.I.V.III.I.XXVI. sup

Code: /snippets/org-mode/
1 # -*- mode: snippet -*-
2 # name: sup
3 # key: sup
4 # --
5 \supset

I.I.V.III.I.XXVII. org-mode

Code: /snippets/org-mode/
1 # -*- mode: snippet -*-
2 # name: supeseteq
3 # key: supe
4 # --
5 \supe

69


	Abstract
	Introduction
	Purpose
	Background
	Method

	Dissertation
	Frontend
	What is Emacs?
	Org mode
	Presentation
	The Emacs X Window Manager
	Portability
	Startup time minimization

	Backend
	Setup installation disks
	Booting
	User Interface
	The Installation Script

	Conclusion

	Bibliography
	Appendix
	Code
	LICENSE (GPL-3)
	config.org
	early.init
	init.el
	install
	Installer
	bare-bones.scm
	config.scm
	get_disks.sh
	get_disks_test.sh
	get_keymaps_test.sh
	guix_config.scm
	guix_iso.scm
	installer.el
	installer.el
	install_iso.sh
	install_quick.sh
	install.sh
	install_test.sh
	keymaps
	logo.ascii_art
	part_iso.sfdisk
	part.sfdisk
	template.scm
	timezones
	test_get_parts.sh

	quick-init.el
	snippets
	org-mode
	cases
	cases
	display_math
	fraction
	fraction_dollar
	fraction_dollar_2
	f(x)
	g(x)
	infinity
	integral
	integral_dollar
	integral_dollar_2
	L
	lhd
	limit
	limit_dollar
	limit_dollar_2
	mathbb
	rhd
	sim
	sube
	subset
	sum
	sum_dollar
	org-mode
	sup
	org-mode






